Notes on the ambitwistor pure spinor string

Open Access
Regular Article - Theoretical Physics

Abstract

In this work, some aspects of the ambitwistor pure spinor string are investigated. The b ghost is presented and its main properties are derived in a simple way, very similar to the usual pure spinor b ghost construction. The heterotic case is also addressed with a new proposal for the BRST charge. The BRST cohomology is shown to correctly describe the heterotic supergravity spectrum and a semi-composite b ghost is constructed.

Keywords

Superstrings and Heterotic Strings Conformal Field Models in String Theory 

References

  1. [1]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    T. Adamo, E. Casali and D. Skinner, A worldsheet theory for supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    O. Chandía and B.C. Vallilo, Ambitwistor pure spinor string in a type-II supergravity background, JHEP 06 (2015) 206 [arXiv:1505.05122] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    O. Chandía and B.C. Vallilo, On-shell type-II supergravity from the ambitwistor pure spinor string, arXiv:1511.03329 [INSPIRE].
  7. [7]
    N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    H. Gomez and E.Y. Yuan, N-point tree-level scattering amplitude in the new Berkovits‘ string, JHEP 04 (2014) 046 [arXiv:1312.5485] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Berkovits, Towards covariant quantization of the supermembrane, JHEP 09 (2002) 051 [hep-th/0201151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Berkovits, Origin of the pure spinor and Green-Schwarz formalisms, JHEP 07 (2015) 091 [arXiv:1503.03080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Adamo and E. Casali, Scattering equations, supergravity integrands and pure spinors, JHEP 05 (2015) 120 [arXiv:1502.06826] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    O. Chandía, The b ghost of the pure spinor formalism is nilpotent, Phys. Lett. B 695 (2011) 312 [arXiv:1008.1778] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    R. Lipinski Jusinskas, Nilpotency of the b ghost in the non-minimal pure spinor formalism, JHEP 05 (2013) 048 [arXiv:1303.3966] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  16. [16]
    R.L. Jusinskas, Notes on the pure spinor b ghost, JHEP 07 (2013) 142 [arXiv:1306.1963] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Azevedo and R. L. Jusinskas, work in progress.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute of Physics AS CRPraha 8Czech Republic

Personalised recommendations