Abstract
Powerful general arguments allow only a few families of long-range interactions, exemplified by gauge field theories of electromagnetism and gravity. However, all of these arguments presuppose that massless fields have zero spin scale (Casimir invariant) and hence exactly boost invariant helicity. This misses the most general behavior compatible with Lorentz symmetry. We present a Lagrangian formalism describing interactions of matter particles with bosonic “continuous spin” fields with arbitrary spin scale ρ. Remarkably, physical observables are well approximated by familiar theories at frequencies larger than ρ, with calculable deviations at low frequencies and long distances. For example, we predict specific ρ-dependent modifications to the Lorentz force law and the Larmor formula, which lay the foundation for experimental tests of the photon’s spin scale. We also reproduce known soft radiation emission amplitudes for nonzero ρ. The particles’ effective matter currents are not fully localized to their worldlines when ρ ≠ 0, which motivates investigation of manifestly local completions of our theory. Our results also motivate the development of continuous spin analogues of gravity and non-Abelian gauge theories. Given the correspondence with familiar gauge theory in the small ρ limit, we conjecture that continuous spin particles may in fact mediate known long-range forces, with testable consequences.
Article PDF
References
E.P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math. 40 (1939) 149 [INSPIRE].
S. Weinberg, Feynman Rules for Any Spin. II. Massless Particles, Phys. Rev. 134 (1964) B882 [INSPIRE].
S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].
S. Weinberg, Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988 [INSPIRE].
S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].
F.A. Berends, G.J.H. Burgers and H. van Dam, On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].
F.A. Berends, G.J.H. Burgers and H. Van Dam, On spin three selfinteractions, Z. Phys. C 24 (1984) 247 [INSPIRE].
X. Bekaert, N. Boulanger and S. Leclercq, Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex, J. Phys. A 43 (2010) 185401 [arXiv:1002.0289] [INSPIRE].
P. Schuster and N. Toro, On the Theory of Continuous-Spin Particles: Wavefunctions and Soft-Factor Scattering Amplitudes, JHEP 09 (2013) 104 [arXiv:1302.1198] [INSPIRE].
P. Schuster and N. Toro, On the Theory of Continuous-Spin Particles: Helicity Correspondence in Radiation and Forces, JHEP 09 (2013) 105 [arXiv:1302.1577] [INSPIRE].
P. Schuster and N. Toro, Continuous-spin particle field theory with helicity correspondence, Phys. Rev. D 91 (2015) 025023 [arXiv:1404.0675] [INSPIRE].
V.O. Rivelles, Gauge Theory Formulations for Continuous and Higher Spin Fields, Phys. Rev. D 91 (2015) 125035 [arXiv:1408.3576] [INSPIRE].
V.O. Rivelles, Remarks on a Gauge Theory for Continuous Spin Particles, Eur. Phys. J. C 77 (2017) 433 [arXiv:1607.01316] [INSPIRE].
X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [arXiv:1708.01030] [INSPIRE].
M. Najafizadeh, Modified Wigner equations and continuous spin gauge field, Phys. Rev. D 97 (2018) 065009 [arXiv:1708.00827] [INSPIRE].
P. Schuster and N. Toro, A new class of particle in 2 + 1 dimensions, Phys. Lett. B 743 (2015) 224 [arXiv:1404.1076] [INSPIRE].
X. Bekaert, M. Najafizadeh and M.R. Setare, A gauge field theory of fermionic Continuous-Spin Particles, Phys. Lett. B 760 (2016) 320 [arXiv:1506.00973] [INSPIRE].
M. Najafizadeh, Supersymmetric Continuous Spin Gauge Theory, JHEP 03 (2020) 027 [arXiv:1912.12310] [INSPIRE].
M. Najafizadeh, Off-shell supersymmetric continuous spin gauge theory, JHEP 02 (2022) 038 [arXiv:2112.10178] [INSPIRE].
R.R. Metsaev, BRST-BV approach to continuous-spin field, Phys. Lett. B 781 (2018) 568 [arXiv:1803.08421] [INSPIRE].
I.L. Buchbinder, V.A. Krykhtin and H. Takata, BRST approach to Lagrangian construction for bosonic continuous spin field, Phys. Lett. B 785 (2018) 315 [arXiv:1806.01640] [INSPIRE].
K. Alkalaev, A. Chekmenev and M. Grigoriev, Unified formulation for helicity and continuous spin fermionic fields, JHEP 11 (2018) 050 [arXiv:1808.09385] [INSPIRE].
I.L. Buchbinder, S. Fedoruk, A.P. Isaev and V.A. Krykhtin, Towards Lagrangian construction for infinite half-integer spin field, Nucl. Phys. B 958 (2020) 115114 [arXiv:2005.07085] [INSPIRE].
I.L. Buchbinder, S.J. Gates and K. Koutrolikos, Superfield continuous spin equations of motion, Phys. Lett. B 793 (2019) 445 [arXiv:1903.08631] [INSPIRE].
I.L. Buchbinder, M.V. Khabarov, T.V. Snegirev and Y.M. Zinoviev, Lagrangian formulation for the infinite spin N = 1 supermultiplets in d = 4, Nucl. Phys. B 946 (2019) 114717 [arXiv:1904.05580] [INSPIRE].
I.L. Buchbinder, S. Fedoruk and A.P. Isaev, Massless infinite spin (super)particles and fields, Proc. Steklov Inst. Math. 309 (2020) 46 [arXiv:1911.00362] [INSPIRE].
I.L. Buchbinder, S.A. Fedoruk, A.P. Isaev and V.A. Krykhtin, On the off-shell superfield Lagrangian formulation of 4D, N = 1 supersymmetric infinite spin theory, Phys. Lett. B 829 (2022) 137139 [arXiv:2203.12904] [INSPIRE].
Y.M. Zinoviev, Infinite spin fields in d = 3 and beyond, Universe 3 (2017) 63 [arXiv:1707.08832] [INSPIRE].
K.B. Alkalaev and M.A. Grigoriev, Continuous spin fields of mixed-symmetry type, JHEP 03 (2018) 030 [arXiv:1712.02317] [INSPIRE].
Č. Burdík, V.K. Pandey and A. Reshetnyak, BRST-BFV and BRST-BV descriptions for bosonic fields with continuous spin on R1,d−1, Int. J. Mod. Phys. A 35 (2020) 2050154 [arXiv:1906.02585] [INSPIRE].
R.R. Metsaev, Continuous spin gauge field in (A)dS space, Phys. Lett. B 767 (2017) 458 [arXiv:1610.00657] [INSPIRE].
R.R. Metsaev, Fermionic continuous spin gauge field in (A)dS space, Phys. Lett. B 773 (2017) 135 [arXiv:1703.05780] [INSPIRE].
R.R. Metsaev, Continuous-spin mixed-symmetry fields in AdS(5), J. Phys. A 51 (2018) 215401 [arXiv:1711.11007] [INSPIRE].
M.V. Khabarov and Y.M. Zinoviev, Infinite (continuous) spin fields in the frame-like formalism, Nucl. Phys. B 928 (2018) 182 [arXiv:1711.08223] [INSPIRE].
R.R. Metsaev, Light-cone continuous-spin field in AdS space, Phys. Lett. B 793 (2019) 134 [arXiv:1903.10495] [INSPIRE].
R.R. Metsaev, Mixed-symmetry continuous-spin fields in flat and AdS spaces, Phys. Lett. B 820 (2021) 136497 [arXiv:2105.11281] [INSPIRE].
R.R. Metsaev, Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields, JHEP 11 (2017) 197 [arXiv:1709.08596] [INSPIRE].
X. Bekaert, J. Mourad and M. Najafizadeh, Continuous-spin field propagator and interaction with matter, JHEP 11 (2017) 113 [arXiv:1710.05788] [INSPIRE].
R.R. Metsaev, Cubic interaction vertices for massive/massless continuous-spin fields and arbitrary spin fields, JHEP 12 (2018) 055 [arXiv:1809.09075] [INSPIRE].
V.O. Rivelles, A Gauge Field Theory for Continuous Spin Tachyons, arXiv:1807.01812 [INSPIRE].
F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit Construction of Conserved Currents for Massless Fields of Arbitrary Spin, Nucl. Phys. B 271 (1986) 429 [INSPIRE].
G.J. Iverson and G. Mack, Theory of weak interactions with “continuous-spin” neutrinos, Phys. Rev. D 2 (1970) 2326 [INSPIRE].
J. Yngvason, Zero-mass infinite spin representations of the poincare group and quantum field theory, Commun. Math. Phys. 18 (1970) 195 [INSPIRE].
G.J. Iverson and G. Mack, Quantum fields and interactions of massless particles — the continuous spin case, Annals Phys. 64 (1971) 211 [INSPIRE].
A. Chakrabarti, Remarks on lightlike continuous spin and spacelike representations of the poincare group, J. Math. Phys. 12 (1971) 1813 [INSPIRE].
L.F. Abbott, Massless Particles with Continuous Spin Indices, Phys. Rev. D 13 (1976) 2291 [INSPIRE].
K. Hirata, Quantization of Massless Fields with Continuous Spin, Prog. Theor. Phys. 58 (1977) 652 [INSPIRE].
X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].
A.M. Khan and P. Ramond, Continuous spin representations from group contraction, J. Math. Phys. 46 (2005) 053515 [hep-th/0410107] [Erratum ibid. 46 (2005) 079901] [INSPIRE].
L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].
L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case, Phys. Rev. D 9 (1974) 910 [INSPIRE].
C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].
J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].
X. Bekaert and J. Mourad, The Continuous spin limit of higher spin field equations, JHEP 01 (2006) 115 [hep-th/0509092] [INSPIRE].
P. Schuster and N. Toro, A Gauge Field Theory of Continuous-Spin Particles, JHEP 10 (2013) 061 [arXiv:1302.3225] [INSPIRE].
A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Macmillan (1973).
T. Ortín, Gravity and Strings, Cambridge University Press (2004).
S. Husa, Michele Maggiore: Gravitational waves. Volume 1: Theory and experiments, Gen. Rel. Grav. 41 (2009) 1667 [INSPIRE].
B. de Wit and D.Z. Freedman, Systematics of Higher Spin Gauge Fields, Phys. Rev. D 21 (1980) 358 [INSPIRE].
A.Y. Segal, Point particle in general background fields and generalized equivalence principle, in International Conference on Quantization, Gauge Theory, and Strings: Conference Dedicated to the Memory of Professor Efim Fradkin, Moscow, Russia (2000), pg. 443 [hep-th/0008105] [INSPIRE].
A.Y. Segal, Point particle in general background fields vsersus gauge theories of traceless symmetric tensors, Int. J. Mod. Phys. A 18 (2003) 4999 [hep-th/0110056] [INSPIRE].
J.D. Jackson, Classical Electrodynamics, Wiley (1999).
M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].
C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].
J.P. Edwards and C. Schubert, Quantum mechanical path integrals in the first quantised approach to quantum field theory, arXiv:1912.10004 [INSPIRE].
R.P. Feynman, Mathematical formulation of the quantum theory of electromagnetic interaction, Phys. Rev. 80 (1950) 440 [INSPIRE].
A. Font, F. Quevedo and S. Theisen, A comment on continuous spin representations of the Poincare group and perturbative string theory, Fortsch. Phys. 62 (2014) 975 [arXiv:1302.4771] [INSPIRE].
E. Titchmarsh, The Theory of Functions, Oxford University Press (1939).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2303.04816
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Schuster, P., Toro, N. & Zhou, K. Interactions of particles with “continuous spin” fields. J. High Energ. Phys. 2023, 10 (2023). https://doi.org/10.1007/JHEP04(2023)010
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2023)010