Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Interactions of particles with “continuous spin” fields

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 03 April 2023
  • volume 2023, Article number: 10 (2023)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Interactions of particles with “continuous spin” fields
Download PDF
  • Philip Schuster1,
  • Natalia Toro1 &
  • Kevin Zhou1 
  • 212 Accesses

  • 1 Citation

  • 1 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

Powerful general arguments allow only a few families of long-range interactions, exemplified by gauge field theories of electromagnetism and gravity. However, all of these arguments presuppose that massless fields have zero spin scale (Casimir invariant) and hence exactly boost invariant helicity. This misses the most general behavior compatible with Lorentz symmetry. We present a Lagrangian formalism describing interactions of matter particles with bosonic “continuous spin” fields with arbitrary spin scale ρ. Remarkably, physical observables are well approximated by familiar theories at frequencies larger than ρ, with calculable deviations at low frequencies and long distances. For example, we predict specific ρ-dependent modifications to the Lorentz force law and the Larmor formula, which lay the foundation for experimental tests of the photon’s spin scale. We also reproduce known soft radiation emission amplitudes for nonzero ρ. The particles’ effective matter currents are not fully localized to their worldlines when ρ ≠ 0, which motivates investigation of manifestly local completions of our theory. Our results also motivate the development of continuous spin analogues of gravity and non-Abelian gauge theories. Given the correspondence with familiar gauge theory in the small ρ limit, we conjecture that continuous spin particles may in fact mediate known long-range forces, with testable consequences.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. E.P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math. 40 (1939) 149 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S. Weinberg, Feynman Rules for Any Spin. II. Massless Particles, Phys. Rev. 134 (1964) B882 [INSPIRE].

  3. S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].

  4. S. Weinberg, Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations, Phys. Rev. 138 (1965) B988 [INSPIRE].

  5. S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].

  6. F.A. Berends, G.J.H. Burgers and H. van Dam, On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].

  7. F.A. Berends, G.J.H. Burgers and H. Van Dam, On spin three selfinteractions, Z. Phys. C 24 (1984) 247 [INSPIRE].

  8. X. Bekaert, N. Boulanger and S. Leclercq, Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex, J. Phys. A 43 (2010) 185401 [arXiv:1002.0289] [INSPIRE].

  9. P. Schuster and N. Toro, On the Theory of Continuous-Spin Particles: Wavefunctions and Soft-Factor Scattering Amplitudes, JHEP 09 (2013) 104 [arXiv:1302.1198] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. P. Schuster and N. Toro, On the Theory of Continuous-Spin Particles: Helicity Correspondence in Radiation and Forces, JHEP 09 (2013) 105 [arXiv:1302.1577] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. P. Schuster and N. Toro, Continuous-spin particle field theory with helicity correspondence, Phys. Rev. D 91 (2015) 025023 [arXiv:1404.0675] [INSPIRE].

  12. V.O. Rivelles, Gauge Theory Formulations for Continuous and Higher Spin Fields, Phys. Rev. D 91 (2015) 125035 [arXiv:1408.3576] [INSPIRE].

  13. V.O. Rivelles, Remarks on a Gauge Theory for Continuous Spin Particles, Eur. Phys. J. C 77 (2017) 433 [arXiv:1607.01316] [INSPIRE].

    Article  ADS  Google Scholar 

  14. X. Bekaert and E.D. Skvortsov, Elementary particles with continuous spin, Int. J. Mod. Phys. A 32 (2017) 1730019 [arXiv:1708.01030] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. M. Najafizadeh, Modified Wigner equations and continuous spin gauge field, Phys. Rev. D 97 (2018) 065009 [arXiv:1708.00827] [INSPIRE].

  16. P. Schuster and N. Toro, A new class of particle in 2 + 1 dimensions, Phys. Lett. B 743 (2015) 224 [arXiv:1404.1076] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. X. Bekaert, M. Najafizadeh and M.R. Setare, A gauge field theory of fermionic Continuous-Spin Particles, Phys. Lett. B 760 (2016) 320 [arXiv:1506.00973] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. M. Najafizadeh, Supersymmetric Continuous Spin Gauge Theory, JHEP 03 (2020) 027 [arXiv:1912.12310] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Najafizadeh, Off-shell supersymmetric continuous spin gauge theory, JHEP 02 (2022) 038 [arXiv:2112.10178] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. R.R. Metsaev, BRST-BV approach to continuous-spin field, Phys. Lett. B 781 (2018) 568 [arXiv:1803.08421] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. I.L. Buchbinder, V.A. Krykhtin and H. Takata, BRST approach to Lagrangian construction for bosonic continuous spin field, Phys. Lett. B 785 (2018) 315 [arXiv:1806.01640] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. K. Alkalaev, A. Chekmenev and M. Grigoriev, Unified formulation for helicity and continuous spin fermionic fields, JHEP 11 (2018) 050 [arXiv:1808.09385] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. I.L. Buchbinder, S. Fedoruk, A.P. Isaev and V.A. Krykhtin, Towards Lagrangian construction for infinite half-integer spin field, Nucl. Phys. B 958 (2020) 115114 [arXiv:2005.07085] [INSPIRE].

  24. I.L. Buchbinder, S.J. Gates and K. Koutrolikos, Superfield continuous spin equations of motion, Phys. Lett. B 793 (2019) 445 [arXiv:1903.08631] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. I.L. Buchbinder, M.V. Khabarov, T.V. Snegirev and Y.M. Zinoviev, Lagrangian formulation for the infinite spin N = 1 supermultiplets in d = 4, Nucl. Phys. B 946 (2019) 114717 [arXiv:1904.05580] [INSPIRE].

  26. I.L. Buchbinder, S. Fedoruk and A.P. Isaev, Massless infinite spin (super)particles and fields, Proc. Steklov Inst. Math. 309 (2020) 46 [arXiv:1911.00362] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  27. I.L. Buchbinder, S.A. Fedoruk, A.P. Isaev and V.A. Krykhtin, On the off-shell superfield Lagrangian formulation of 4D, N = 1 supersymmetric infinite spin theory, Phys. Lett. B 829 (2022) 137139 [arXiv:2203.12904] [INSPIRE].

  28. Y.M. Zinoviev, Infinite spin fields in d = 3 and beyond, Universe 3 (2017) 63 [arXiv:1707.08832] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K.B. Alkalaev and M.A. Grigoriev, Continuous spin fields of mixed-symmetry type, JHEP 03 (2018) 030 [arXiv:1712.02317] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Č. Burdík, V.K. Pandey and A. Reshetnyak, BRST-BFV and BRST-BV descriptions for bosonic fields with continuous spin on R1,d−1, Int. J. Mod. Phys. A 35 (2020) 2050154 [arXiv:1906.02585] [INSPIRE].

  31. R.R. Metsaev, Continuous spin gauge field in (A)dS space, Phys. Lett. B 767 (2017) 458 [arXiv:1610.00657] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. R.R. Metsaev, Fermionic continuous spin gauge field in (A)dS space, Phys. Lett. B 773 (2017) 135 [arXiv:1703.05780] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. R.R. Metsaev, Continuous-spin mixed-symmetry fields in AdS(5), J. Phys. A 51 (2018) 215401 [arXiv:1711.11007] [INSPIRE].

  34. M.V. Khabarov and Y.M. Zinoviev, Infinite (continuous) spin fields in the frame-like formalism, Nucl. Phys. B 928 (2018) 182 [arXiv:1711.08223] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. R.R. Metsaev, Light-cone continuous-spin field in AdS space, Phys. Lett. B 793 (2019) 134 [arXiv:1903.10495] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. R.R. Metsaev, Mixed-symmetry continuous-spin fields in flat and AdS spaces, Phys. Lett. B 820 (2021) 136497 [arXiv:2105.11281] [INSPIRE].

  37. R.R. Metsaev, Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields, JHEP 11 (2017) 197 [arXiv:1709.08596] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. X. Bekaert, J. Mourad and M. Najafizadeh, Continuous-spin field propagator and interaction with matter, JHEP 11 (2017) 113 [arXiv:1710.05788] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. R.R. Metsaev, Cubic interaction vertices for massive/massless continuous-spin fields and arbitrary spin fields, JHEP 12 (2018) 055 [arXiv:1809.09075] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. V.O. Rivelles, A Gauge Field Theory for Continuous Spin Tachyons, arXiv:1807.01812 [INSPIRE].

  41. F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit Construction of Conserved Currents for Massless Fields of Arbitrary Spin, Nucl. Phys. B 271 (1986) 429 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. G.J. Iverson and G. Mack, Theory of weak interactions with “continuous-spin” neutrinos, Phys. Rev. D 2 (1970) 2326 [INSPIRE].

  43. J. Yngvason, Zero-mass infinite spin representations of the poincare group and quantum field theory, Commun. Math. Phys. 18 (1970) 195 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. G.J. Iverson and G. Mack, Quantum fields and interactions of massless particles — the continuous spin case, Annals Phys. 64 (1971) 211 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Chakrabarti, Remarks on lightlike continuous spin and spacelike representations of the poincare group, J. Math. Phys. 12 (1971) 1813 [INSPIRE].

  46. L.F. Abbott, Massless Particles with Continuous Spin Indices, Phys. Rev. D 13 (1976) 2291 [INSPIRE].

  47. K. Hirata, Quantization of Massless Fields with Continuous Spin, Prog. Theor. Phys. 58 (1977) 652 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A.M. Khan and P. Ramond, Continuous spin representations from group contraction, J. Math. Phys. 46 (2005) 053515 [hep-th/0410107] [Erratum ibid. 46 (2005) 079901] [INSPIRE].

  50. L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].

  51. L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case, Phys. Rev. D 9 (1974) 910 [INSPIRE].

  52. C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

  53. J. Fang and C. Fronsdal, Massless Fields with Half Integral Spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

  54. X. Bekaert and J. Mourad, The Continuous spin limit of higher spin field equations, JHEP 01 (2006) 115 [hep-th/0509092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. P. Schuster and N. Toro, A Gauge Field Theory of Continuous-Spin Particles, JHEP 10 (2013) 061 [arXiv:1302.3225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

  57. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Macmillan (1973).

  58. T. Ortín, Gravity and Strings, Cambridge University Press (2004).

  59. S. Husa, Michele Maggiore: Gravitational waves. Volume 1: Theory and experiments, Gen. Rel. Grav. 41 (2009) 1667 [INSPIRE].

  60. B. de Wit and D.Z. Freedman, Systematics of Higher Spin Gauge Fields, Phys. Rev. D 21 (1980) 358 [INSPIRE].

  61. A.Y. Segal, Point particle in general background fields and generalized equivalence principle, in International Conference on Quantization, Gauge Theory, and Strings: Conference Dedicated to the Memory of Professor Efim Fradkin, Moscow, Russia (2000), pg. 443 [hep-th/0008105] [INSPIRE].

  62. A.Y. Segal, Point particle in general background fields vsersus gauge theories of traceless symmetric tensors, Int. J. Mod. Phys. A 18 (2003) 4999 [hep-th/0110056] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. J.D. Jackson, Classical Electrodynamics, Wiley (1999).

  64. M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].

  65. C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. J.P. Edwards and C. Schubert, Quantum mechanical path integrals in the first quantised approach to quantum field theory, arXiv:1912.10004 [INSPIRE].

  67. R.P. Feynman, Mathematical formulation of the quantum theory of electromagnetic interaction, Phys. Rev. 80 (1950) 440 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. A. Font, F. Quevedo and S. Theisen, A comment on continuous spin representations of the Poincare group and perturbative string theory, Fortsch. Phys. 62 (2014) 975 [arXiv:1302.4771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. E. Titchmarsh, The Theory of Functions, Oxford University Press (1939).

Download references

Author information

Authors and Affiliations

  1. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA

    Philip Schuster, Natalia Toro & Kevin Zhou

Authors
  1. Philip Schuster
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Natalia Toro
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kevin Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Kevin Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2303.04816

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, P., Toro, N. & Zhou, K. Interactions of particles with “continuous spin” fields. J. High Energ. Phys. 2023, 10 (2023). https://doi.org/10.1007/JHEP04(2023)010

Download citation

  • Received: 21 March 2023

  • Accepted: 26 March 2023

  • Published: 03 April 2023

  • DOI: https://doi.org/10.1007/JHEP04(2023)010

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge Symmetry
  • New Gauge Interactions
  • Space-Time Symmetries
  • New Light Particles
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature