Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
High-dimensional anomaly detection with radiative return in e+e− collisions
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Finding new physics without learning about it: anomaly detection as a tool for searches at colliders

15 January 2021

M. Crispim Romão, N. F. Castro & R. Pedro

Comparing weak- and unsupervised methods for resonant anomaly detection

15 July 2021

Jack H. Collins, Pablo Martín-Ramiro, … David Shih

Adversarially-trained autoencoders for robust unsupervised new physics searches

04 October 2019

Andrew Blance, Michael Spannowsky & Philip Waite

Machine learning uncertainties with adversarial neural networks

03 January 2019

Christoph Englert, Peter Galler, … Michael Spannowsky

Quantum anomaly detection for collider physics

22 February 2023

Sulaiman Alvi, Christian W. Bauer & Benjamin Nachman

Quasi anomalous knowledge: searching for new physics with embedded knowledge

04 June 2021

Sang Eon Park, Dylan Rankin, … Philip Harris

Use of a generalized energy Mover’s distance in the search for rare phenomena at colliders

26 February 2021

M. Crispim Romão, N. F. Castro, … T. Vale

Adversarially Learned Anomaly Detection on CMS open data: re-discovering the top quark

19 February 2021

O. Knapp, O. Cerri, … J. R. Vlimant

Study of energy deposition patterns in hadron calorimeter for prompt and displaced jets using convolutional neural network

27 November 2019

Biplob Bhattacherjee, Swagata Mukherjee & Rhitaja Sengupta

Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 26 April 2022

High-dimensional anomaly detection with radiative return in e+e− collisions

  • Julia Gonski  ORCID: orcid.org/0000-0003-2037-63151,
  • Jerry Lai2,
  • Benjamin Nachman3,4 &
  • …
  • Inês Ochoa  ORCID: orcid.org/0000-0001-6156-17905 

Journal of High Energy Physics volume 2022, Article number: 156 (2022) Cite this article

  • 120 Accesses

  • 2 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Experiments at a future e+e− collider will be able to search for new particles with masses below the nominal centre-of-mass energy by analyzing collisions with initial-state radiation (radiative return). We show that machine learning methods that use imperfect or missing training labels can achieve sensitivity to generic new particle production in radiative return events. In addition to presenting an application of the classification without labels (CWoLa) search method in e+e− collisions, our study combines weak supervision with variable-dimensional information by deploying a deep sets neural network architecture. We have also investigated some of the experimental aspects of anomaly detection in radiative return events and discuss these in the context of future detector design.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. Button, G. R. Kalbfleisch, G. R. Lynch, B. C. Maglić, A. H. Rosenfeld and M. L. Stevenson, Pion-pion interaction in the reaction barp + p → 2π+ + 2π− + nπ0, Phys. Rev. 126 (1962) 1858 [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  3. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  4. R. T. D’Agnolo and A. Wulzer, Learning new physics from a machine, Phys. Rev. D 99 (2019) 015014 [arXiv:1806.02350] [INSPIRE].

    ADS  Google Scholar 

  5. J. H. Collins, K. Howe and B. Nachman, Anomaly detection for resonant new physics with machine learning, Phys. Rev. Lett. 121 (2018) 241803 [arXiv:1805.02664] [INSPIRE].

    ADS  Google Scholar 

  6. J. H. Collins, K. Howe and B. Nachman, Extending the search for new resonances with machine learning, Phys. Rev. D 99 (2019) 014038 [arXiv:1902.02634] [INSPIRE].

    ADS  Google Scholar 

  7. R. T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer and M. Zanetti, Learning multivariate new physics, Eur. Phys. J. C 81 (2021) 89 [arXiv:1912.12155] [INSPIRE].

    ADS  Google Scholar 

  8. M. Farina, Y. Nakai and D. Shih, Searching for new physics with deep autoencoders, Phys. Rev. D 101 (2020) 075021 [arXiv:1808.08992] [INSPIRE].

    ADS  Google Scholar 

  9. T. Heimel, G. Kasieczka, T. Plehn and J. M. Thompson, QCD or what?, SciPost Phys. 6 (2019) 030 [arXiv:1808.08979] [INSPIRE].

    ADS  Google Scholar 

  10. T. S. Roy and A. H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032 [INSPIRE].

  11. O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu and J.-R. Vlimant, Variational autoencoders for new physics mining at the Large Hadron Collider, JHEP 05 (2019) 036 [arXiv:1811.10276] [INSPIRE].

    ADS  Google Scholar 

  12. A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].

    ADS  Google Scholar 

  13. J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty detection meets collider physics, Phys. Rev. D 101 (2020) 076015 [arXiv:1807.10261] [INSPIRE].

    ADS  Google Scholar 

  14. A. De Simone and T. Jacques, Guiding new physics searches with unsupervised learning, Eur. Phys. J. C 79 (2019) 289 [arXiv:1807.06038] [INSPIRE].

    ADS  Google Scholar 

  15. A. Casa and G. Menardi, Nonparametric semisupervised classification for signal detection in high energy physics, arXiv:1809.02977 [INSPIRE].

  16. B. M. Dillon, D. A. Faroughy and J. F. Kamenik, Uncovering latent jet substructure, Phys. Rev. D 100 (2019) 056002 [arXiv:1904.04200] [INSPIRE].

    ADS  Google Scholar 

  17. A. Andreassen, B. Nachman and D. Shih, Simulation assisted likelihood-free anomaly detection, Phys. Rev. D 101 (2020) 095004 [arXiv:2001.05001] [INSPIRE].

    ADS  Google Scholar 

  18. B. Nachman and D. Shih, Anomaly detection with density estimation, Phys. Rev. D 101 (2020) 075042 [arXiv:2001.04990] [INSPIRE].

    ADS  Google Scholar 

  19. J. A. Aguilar-Saavedra, J. H. Collins and R. K. Mishra, A generic anti-QCD jet tagger, JHEP 11 (2017) 163 [arXiv:1709.01087] [INSPIRE].

    ADS  Google Scholar 

  20. M. Romão Crispim, N. F. Castro, R. Pedro and T. Vale, Transferability of deep learning models in searches for new physics at colliders, Phys. Rev. D 101 (2020) 035042 [arXiv:1912.04220] [INSPIRE].

    ADS  Google Scholar 

  21. M. Crispim Romão, N. F. Castro, J. G. Milhano, R. Pedro and T. Vale, Use of a generalized energy Mover’s distance in the search for rare phenomena at colliders, Eur. Phys. J. C 81 (2021) 192 [arXiv:2004.09360] [INSPIRE].

    ADS  Google Scholar 

  22. O. Knapp, O. Cerri, G. Dissertori, T. Q. Nguyen, M. Pierini and J.-R. Vlimant, Adversarially learned anomaly detection on CMS open data: re-discovering the top quark, Eur. Phys. J. Plus 136 (2021) 236 [arXiv:2005.01598] [INSPIRE].

    Google Scholar 

  23. ATLAS collaboration, Dijet resonance search with weak supervision using \( \sqrt{s} \) = 13 TeV pp collisions in the ATLAS detector, Phys. Rev. Lett. 125 (2020) 131801 [arXiv:2005.02983] [INSPIRE].

  24. B. M. Dillon, D. A. Faroughy, J. F. Kamenik and M. Szewc, Learning the latent structure of collider events, JHEP 10 (2020) 206 [arXiv:2005.12319] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. M. Crispim Romão, N. F. Castro and R. Pedro, Finding new physics without learning about it: anomaly detection as a tool for searches at colliders, Eur. Phys. J. C 81 (2021) 27 [Erratum ibid. 81 (2021) 1020] [arXiv:2006.05432] [INSPIRE].

  26. O. Amram and C. M. Suarez, Tag N’ Train: a technique to train improved classifiers on unlabeled data, JHEP 01 (2021) 153 [arXiv:2002.12376] [INSPIRE].

    ADS  Google Scholar 

  27. T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational autoencoders for anomalous jet tagging, arXiv:2007.01850 [INSPIRE].

  28. C. K. Khosa and V. Sanz, Anomaly awareness, arXiv:2007.14462 [INSPIRE].

  29. J. A. Aguilar-Saavedra, F. R. Joaquim and J. F. Seabra, Mass Unspecific Supervised Tagging (MUST) for boosted jets, JHEP 03 (2021) 012 [Erratum ibid. 04 (2021) 133] [arXiv:2008.12792] [INSPIRE].

  30. K. Benkendorfer, L. L. Pottier and B. Nachman, Simulation-assisted decorrelation for resonant anomaly detection, Phys. Rev. D 104 (2021) 035003 [arXiv:2009.02205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. A. A. Pol, V. Berger, G. Cerminara, C. Germain and M. Pierini, Anomaly detection with conditional variational autoencoders, in Eighteenth international conference on machine learning and applications, (2020) [arXiv:2010.05531] [INSPIRE].

  32. V. Mikuni and F. Canelli, Unsupervised clustering for collider physics, Phys. Rev. D 103 (2021) 092007 [arXiv:2010.07106] [INSPIRE].

    ADS  Google Scholar 

  33. M. van Beekveld et al., Combining outlier analysis algorithms to identify new physics at the LHC, JHEP 09 (2021) 024 [arXiv:2010.07940] [INSPIRE].

    Google Scholar 

  34. S. E. Park, D. Rankin, S.-M. Udrescu, M. Yunus and P. Harris, Quasi anomalous knowledge: searching for new physics with embedded knowledge, JHEP 06 (2021) 030 [arXiv:2011.03550] [INSPIRE].

    ADS  Google Scholar 

  35. D. A. Faroughy, Uncovering hidden new physics patterns in collider events using Bayesian probabilistic models, PoS ICHEP2020 (2021) 238 [arXiv:2012.08579] [INSPIRE].

  36. G. Stein, U. Seljak and B. Dai, Unsupervised in-distribution anomaly detection of new physics through conditional density estimation, in 34th conference on neural information processing systems, (2020) [arXiv:2012.11638] [INSPIRE].

  37. G. Kasieczka et al., The LHC olympics 2020 a community challenge for anomaly detection in high energy physics, Rept. Prog. Phys. 84 (2021) 124201 [arXiv:2101.08320] [INSPIRE].

    ADS  Google Scholar 

  38. A. Blance and M. Spannowsky, Unsupervised event classification with graphs on classical and photonic quantum computers, JHEP 08 (2021) 170 [arXiv:2103.03897] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. B. Bortolato, B. M. Dillon, J. F. Kamenik and A. Smolkovič, Bump hunting in latent space, arXiv:2103.06595 [INSPIRE].

  40. J. H. Collins, P. Martín-Ramiro, B. Nachman and D. Shih, Comparing weak- and unsupervised methods for resonant anomaly detection, Eur. Phys. J. C 81 (2021) 617 [arXiv:2104.02092] [INSPIRE].

    ADS  Google Scholar 

  41. B. M. Dillon, T. Plehn, C. Sauer and P. Sorrenson, Better latent spaces for better autoencoders, SciPost Phys. 11 (2021) 061 [arXiv:2104.08291] [INSPIRE].

    ADS  Google Scholar 

  42. T. Finke, M. Krämer, A. Morandini, A. Mück and I. Oleksiyuk, Autoencoders for unsupervised anomaly detection in high energy physics, JHEP 06 (2021) 161 [arXiv:2104.09051] [INSPIRE].

    ADS  Google Scholar 

  43. O. Atkinson, A. Bhardwaj, C. Englert, V. S. Ngairangbam and M. Spannowsky, Anomaly detection with convolutional graph neural networks, JHEP 08 (2021) 080 [arXiv:2105.07988] [INSPIRE].

    ADS  Google Scholar 

  44. A. Kahn, J. Gonski, I. Ochoa, D. Williams and G. Brooijmans, Anomalous jet identification via sequence modeling, 2021 JINST 16 P08012 [arXiv:2105.09274] [INSPIRE].

    ADS  Google Scholar 

  45. T. Aarrestad et al., The dark machines anomaly score challenge: benchmark data and model independent event classification for the Large Hadron Collider, SciPost Phys. 12 (2022) 043 [arXiv:2105.14027] [INSPIRE].

    ADS  Google Scholar 

  46. T. Dorigo, M. Fumanelli, C. Maccani, M. Mojsovska, G. C. Strong and B. Scarpa, RanBox: anomaly detection in the Copula space, arXiv:2106.05747 [INSPIRE].

  47. S. Caron, L. Hendriks and R. Verheyen, Rare and different: anomaly scores from a combination of likelihood and out-of-distribution models to detect new physics at the LHC, SciPost Phys. 12 (2022) 077 [arXiv:2106.10164] [INSPIRE].

    ADS  Google Scholar 

  48. E. Govorkova, E. Puljak, T. Aarrestad, M. Pierini, K. A. Woźniak and J. Ngadiuba, LHC physics dataset for unsupervised new physics detection at 40 MHz, arXiv:2107.02157 [INSPIRE].

  49. G. Kasieczka, B. Nachman and D. Shih, New methods and datasets for group anomaly detection from fundamental physics, in Conference on knowledge discovery and data mining, (2021) [arXiv:2107.02821] [INSPIRE].

  50. M. Feickert and B. Nachman, A living review of machine learning for particle physics, arXiv:2102.02770 [INSPIRE].

  51. D. Shih, M. R. Buckley, L. Necib and J. Tamanas, Via Machinae: searching for stellar streams using unsupervised machine learning, Mon. Not. Roy. Astron. Soc. 509 (2021) 5992 [arXiv:2104.12789] [INSPIRE].

    ADS  Google Scholar 

  52. FCC collaboration, FCC physics opportunities: Future Circular Collider conceptual design report volume 1, Eur. Phys. J. C 79 (2019) 474 [INSPIRE].

  53. FCC collaboration, FCC-ee: the lepton collider. Future Circular Collider conceptual design report volume 2, Eur. Phys. J. ST 228 (2019) 261 [INSPIRE].

  54. FCC collaboration, FCC-hh: the hadron collider. Future Circular Collider conceptual design report volume 3, Eur. Phys. J. ST 228 (2019) 755 [INSPIRE].

  55. T. Behnke et al. eds., The International Linear Collider technical design report — volume 1: executive summary, arXiv:1306.6327 [INSPIRE].

  56. H. Baer et al. eds., The International Linear Collider technical design report — volume 2: physics, arXiv:1306.6352 [INSPIRE].

  57. C. Adolphsen et al. eds., The International Linear Collider technical design report — volume 3.I: accelerator & in the technical design phase, arXiv:1306.6353 [INSPIRE].

  58. C. Adolphsen et al. eds., The International Linear Collider technical design report — volume 3.II: accelerator baseline design, arXiv:1306.6328 [INSPIRE].

  59. H. Abramowicz et al., The International Linear Collider technical design report — volume 4: detectors, arXiv:1306.6329 [INSPIRE].

  60. International Linear Collider International Development Team collaboration, Proposal for the ILC preparatory laboratory (pre-lab), arXiv:2106.00602 [INSPIRE].

  61. CEPC Study Group collaboration, CEPC conceptual design report: volume 1 — accelerator, arXiv:1809.00285 [INSPIRE].

  62. CEPC Study Group collaboration, CEPC conceptual design report: volume 2 — physics & detector, arXiv:1811.10545 [INSPIRE].

  63. L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts eds., Physics and detectors at CLIC: CLIC conceptual design report, CERN yellow report CERN-2012-003, CERN, Geneva, Switzerland (2012) [arXiv:1202.5940] [INSPIRE].

  64. CLICdp and CLIC collaborations, The Compact Linear Collider (CLIC) — 2018 summary report, arXiv:1812.06018 [INSPIRE].

  65. P. T. Komiske, E. M. Metodiev, B. Nachman and M. D. Schwartz, Learning to classify from impure samples with high-dimensional data, Phys. Rev. D 98 (2018) 011502 [arXiv:1801.10158] [INSPIRE].

    ADS  Google Scholar 

  66. A. Denig, The radiative return: a review of experimental results, Nucl. Phys. B Proc. Suppl. 162 (2006) 81 [hep-ex/0611024] [INSPIRE].

    ADS  Google Scholar 

  67. W. Kluge, Initial state radiation: a success story, Nucl. Phys. B Proc. Suppl. 181-182 (2008) 280 [arXiv:0805.4708] [INSPIRE].

    ADS  Google Scholar 

  68. H. Czyz, A. Grzelinska and J. H. Kühn, Narrow resonances studies with the radiative return method, Phys. Rev. D 81 (2010) 094014 [arXiv:1002.0279] [INSPIRE].

    ADS  Google Scholar 

  69. V. P. Druzhinin, S. I. Eidelman, S. I. Serednyakov and E. P. Solodov, Hadron production via e+ e− collisions with initial state radiation, Rev. Mod. Phys. 83 (2011) 1545 [arXiv:1105.4975] [INSPIRE].

    ADS  Google Scholar 

  70. M. Karliner, M. Low, J. L. Rosner and L.-T. Wang, Radiative return capabilities of a high-energy, high-luminosity e+ e− collider, Phys. Rev. D 92 (2015) 035010 [arXiv:1503.07209] [INSPIRE].

    ADS  Google Scholar 

  71. G. Li, Z. Li, Y. Wang and Y. Wang, Improving the measurement of the Higgs boson-gluon coupling using convolutional neural networks at e+ e− colliders, Phys. Rev. D 100 (2019) 116013 [arXiv:1901.09391] [INSPIRE].

    ADS  Google Scholar 

  72. L. Li, Y.-Y. Li, T. Liu and S.-J. Xu, Learning physics at future e− e+ colliders with machine, JHEP 10 (2020) 018 [arXiv:2004.15013] [INSPIRE].

    ADS  Google Scholar 

  73. M. Zaheer et al., Deep sets, in Proceedings of the 31st international conference on neural information processing systems, NIPS’17, Red Hook, NY, U.S.A., Curran Associates Inc., U.S.A. (2017), p. 3394.

  74. P. T. Komiske, E. M. Metodiev and J. Thaler, Energy flow networks: deep sets for particle jets, JHEP 01 (2019) 121 [arXiv:1810.05165] [INSPIRE].

    ADS  Google Scholar 

  75. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Google Scholar 

  76. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

    ADS  MATH  Google Scholar 

  77. M. Selvaggi, DELPHES 3: a modular framework for fast-simulation of generic collider experiments, J. Phys. Conf. Ser. 523 (2014) 012033 [INSPIRE].

    Google Scholar 

  78. ILD Concept Group collaboration, International Large Detector: interim design report, arXiv:2003.01116 [INSPIRE].

  79. M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  MATH  Google Scholar 

  80. M. Cacciari and G. P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  81. M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  MATH  Google Scholar 

  82. T. Barklow et al., ILC operating scenarios, arXiv:1506.07830 [INSPIRE].

  83. E. M. Metodiev, B. Nachman and J. Thaler, Classification without labels: learning from mixed samples in high energy physics, JHEP 10 (2017) 174 [arXiv:1708.02949] [INSPIRE].

    ADS  Google Scholar 

  84. J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    ADS  Google Scholar 

  85. J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N -subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    ADS  Google Scholar 

  86. F. Chollet et al., Keras, https://github.com/fchollet/keras, (2015).

  87. M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous distributed systems, arXiv:1603.04467 [INSPIRE].

  88. TensorFlow webpage, https://www.tensorflow.org/.

  89. D. P. Kingma and J. Ba, Adam: a method for stochastic optimization, 12, 2014 [arXiv:1412.6980] [INSPIRE].

  90. J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121.

  91. G. Hinton, N. Srivastava and K. Swersky, Neural networks for machine learning: lecture 6a, http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture_slides_lec6.pdf.

  92. A. Banfi, G. P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].

    ADS  MATH  Google Scholar 

  93. ALEPH collaboration, Studies of quantum chromodynamics with the ALEPH detector, Phys. Rept. 294 (1998) 1 [INSPIRE].

  94. OPAL collaboration, QCD studies with e+ e− annihilation data at 130 GeV and 136 GeV, Z. Phys. C 72 (1996) 191 [INSPIRE].

  95. ATLAS collaboration, Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 72 (2012) 2211 [arXiv:1206.2135] [INSPIRE].

  96. CMS collaboration, Event shape variables measured using multijet final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 12 (2018) 117 [arXiv:1811.00588] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Nevis Laboratories, Columbia University, 136 S Broadway, Irvington, NY, USA

    Julia Gonski

  2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA

    Jerry Lai

  3. Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

    Benjamin Nachman

  4. Berkeley Institute for Data Science, University of California, Berkeley, CA, 94720, USA

    Benjamin Nachman

  5. Laboratory of Instrumentation and Experimental Particle Physics, Lisbon, Portugal

    Inês Ochoa

Authors
  1. Julia Gonski
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jerry Lai
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Benjamin Nachman
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Inês Ochoa
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Julia Gonski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2108.13451

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonski, J., Lai, J., Nachman, B. et al. High-dimensional anomaly detection with radiative return in e+e− collisions. J. High Energ. Phys. 2022, 156 (2022). https://doi.org/10.1007/JHEP04(2022)156

Download citation

  • Received: 21 September 2021

  • Accepted: 04 April 2022

  • Published: 26 April 2022

  • DOI: https://doi.org/10.1007/JHEP04(2022)156

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • e +-e − Experiments
  • Particle and Resonance Production
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.