Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Lepto-axiogenesis in minimal SUSY KSVZ model
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

NMSSM from alternative deflection in generalized deflected anomaly mediated SUSY breaking

29 May 2018

Xiaokang Du & Fei Wang

Dark matter in the KL moduli stabilization scenario with SUSY breaking sector from N $$ \mathcal{N} $$ = 1 SQCD

24 January 2019

Thaisa C. da C. Guio & Ernany R. Schmitz

Lepto-axiogenesis

01 March 2021

Raymond T. Co, Nicolas Fernandez, … Keisuke Harigaya

QCD axion from a spontaneously broken B − L gauge symmetry

08 July 2020

Gongjun Choi, Motoo Suzuki & Tsutomu T. Yanagida

b − τ Yukawa unification in SUSY SU(5) with mirage mediation: LHC and dark matter implications

08 May 2019

Shabbar Raza, Qaisar Shafi & Cem Salih Ün

Expanding the parameter space of natural supersymmetry

22 April 2020

Amin Aboubrahim, Wan-Zhe Feng & Pran Nath

Bino-wino coannihilation as a prediction in the E7 unification of families

30 December 2019

Tsutomu T. Yanagida, Wen Yin & Norimi Yokozaki

Chiral anomaly in SU(2)R-axion inflation and the new prediction for particle cosmology

17 June 2021

Azadeh Maleknejad

Proton decay and axion dark matter in SO(10) grand unification via minimal left–right symmetry

28 May 2020

Yuta Hamada, Masahiro Ibe, … Norimi Yokozaki

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 20 April 2022

Lepto-axiogenesis in minimal SUSY KSVZ model

  • Junichiro Kawamura1,2 &
  • Stuart Raby3 

Journal of High Energy Physics volume 2022, Article number: 116 (2022) Cite this article

  • 69 Accesses

  • 4 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the lepto-axiogenesis scenario in the minimal supersymmetric KSVZ axion model. Only one Peccei-Quinn (PQ) field and vector-like fields are introduced besides the MSSM with the type-I see-saw mechanism. The PQ field is stabilized by the radiative correction induced by the Yukawa couplings with the vector-like fields introduced in the KSVZ model. We develop a way to follow the dynamics of the PQ field, in particular we found a semi-analytical solution which describes the rotational motion under the log-arithmic potential with including the thermalization effect via the gluon scattering which preserves the PQ symmetry. Based on the solution, we studied the baryon asymmetry, the effective number of neutrino, and the dark matter density composed of the axion and the neutralino. We found that the baryon asymmetry is successfully explained when the mass of PQ field is \( \mathcal{O} \)(106 GeV) (\( \mathcal{O} \)(105 GeV)) with the power of the PQ breaking term being 10 (8).

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].

  2. M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].

  3. R.T. Co and K. Harigaya, Axiogenesis, Phys. Rev. Lett. 124 (2020) 111602 [arXiv:1910.02080] [INSPIRE].

  4. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

  5. R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

  6. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

  7. R.T. Co, N. Fernandez, A. Ghalsasi, L.J. Hall and K. Harigaya, Lepto-Axiogenesis, JHEP 03 (2021) 017 [arXiv:2006.05687] [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Moxhay and K. Yamamoto, Peccei-Quinn Symmetry Breaking by Radiative Corrections in Supergravity, Phys. Lett. B 151 (1985) 363 [INSPIRE].

  9. D. Bödeker, Moduli decay in the hot early Universe, JCAP 06 (2006) 027 [hep-ph/0605030] [INSPIRE].

  10. M. Laine, On bulk viscosity and moduli decay, Prog. Theor. Phys. Suppl. 186 (2010) 404 [arXiv:1007.2590] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  11. K. Mukaida and K. Nakayama, Dynamics of oscillating scalar field in thermal environment, JCAP 01 (2013) 017 [arXiv:1208.3399] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

  13. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

  14. A. Anisimov and M. Dine, Some issues in flat direction baryogenesis, Nucl. Phys. B 619 (2001) 729 [hep-ph/0008058] [INSPIRE].

  15. R.T. Co, L.J. Hall and K. Harigaya, Predictions for Axion Couplings from ALP Cogenesis, JHEP 01 (2021) 172 [arXiv:2006.04809] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

  17. J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].

  18. B. Graner, Y. Chen, E.G. Lindahl and B.R. Heckel, Reduced Limit on the Permanent Electric Dipole Moment of 199Hg, Phys. Rev. Lett. 116 (2016) 161601 [Erratum ibid. 119 (2017) 119901] [arXiv:1601.04339] [INSPIRE].

  19. T. Moroi and M. Takimoto, Thermal Effects on Saxion in Supersymmetric Model with Peccei-Quinn Symmetry, Phys. Lett. B 718 (2012) 105 [arXiv:1207.4858] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Moroi, K. Mukaida, K. Nakayama and M. Takimoto, Scalar Trapping and Saxion Cosmology, JHEP 06 (2013) 040 [arXiv:1304.6597] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. T. Moroi, K. Mukaida, K. Nakayama and M. Takimoto, Axion Models with High Scale Inflation, JHEP 11 (2014) 151 [arXiv:1407.7465] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. R.T. Co et al., Gravitational Wave and CMB Probes of Axion Kination, arXiv:2108.09299 [INSPIRE].

  23. R.T. Co, F. D’Eramo and L.J. Hall, Supersymmetric axion grand unified theories and their predictions, Phys. Rev. D 94 (2016) 075001 [arXiv:1603.04439] [INSPIRE].

  24. K. Harigaya and J.M. Leedom, QCD Axion Dark Matter from a Late Time Phase Transition, JHEP 06 (2020) 034 [arXiv:1910.04163] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. Planck collaboration, Planck 2018 results. Part VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  27. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

  28. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  29. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  30. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

  31. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, Current unknowns in the three neutrino framework, Prog. Part. Nucl. Phys. 102 (2018) 48 [arXiv:1804.09678] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].

  35. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

  36. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  37. Z. Poh and S. Raby, Yukawa Unification in an SO(10) SUSY GUT: SUSY on the Edge, Phys. Rev. D 92 (2015) 015017 [arXiv:1505.00264] [INSPIRE].

  38. Z. Poh, S. Raby and Z.-z. Wang, Pati-Salam SUSY GUT with Yukawa unification, Phys. Rev. D 95 (2017) 115025 [arXiv:1703.09309] [INSPIRE].

  39. S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs, in Lecture Notes in Physics 939, Springer, Cham, Switzerland (2017) [INSPIRE].

  40. CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].

  41. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. R.T. Co, L.J. Hall and K. Harigaya, Axion Kinetic Misalignment Mechanism, Phys. Rev. Lett. 124 (2020) 251802 [arXiv:1910.14152] [INSPIRE].

  43. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

  44. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

  45. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

  46. M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].

  47. M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. 790 (2008) 336] [hep-ph/0012052] [INSPIRE].

  48. J. Pradler and F.D. Steffen, Constraints on the Reheating Temperature in Gravitino Dark Matter Scenarios, Phys. Lett. B 648 (2007) 224 [hep-ph/0612291] [INSPIRE].

  49. T. Moroi, Effects of the gravitino on the inflationary universe, Ph.D. Thesis, Tohoku University, Sendai, Japan (1995) [hep-ph/9503210] [INSPIRE].

  50. S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].

  51. M.Y. Khlopov and A.D. Linde, Is It Easy to Save the Gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].

  52. K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].

  53. K. Rajagopal, M.S. Turner and F. Wilczek, Cosmological implications of axinos, Nucl. Phys. B 358 (1991) 447 [INSPIRE].

  54. K.-Y. Choi, L. Covi, J.E. Kim and L. Roszkowski, Axino Cold Dark Matter Revisited, JHEP 04 (2012) 106 [arXiv:1108.2282] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J.E. Kim and M.-S. Seo, Mixing of axino and goldstino, and axino mass, Nucl. Phys. B 864 (2012) 296 [arXiv:1204.5495] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  56. K.-Y. Choi, J.E. Kim and L. Roszkowski, Review of axino dark matter, J. Korean Phys. Soc. 63 (2013) 1685 [arXiv:1307.3330] [INSPIRE].

    Article  ADS  Google Scholar 

  57. K.A. Olive and M. Srednicki, Cosmological limits on massive LSP’s, Nucl. Phys. B 355 (1991) 208 [INSPIRE].

  58. K.A. Olive and M. Srednicki, New Limits on Parameters of the Supersymmetric Standard Model from Cosmology, Phys. Lett. B 230 (1989) 78 [INSPIRE].

  59. N. Arkani-Hamed, A. Delgado and G.F. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

  60. R.K. Leane, Indirect Detection of Dark Matter in the Galaxy, in proceedings of the 3rd World Summit on Exploring the Dark Side of the Universe, Guadeloupe, Point à Pitre, France, 9–13 March 2020, pp. 203–228 [arXiv:2006.00513] [INSPIRE].

  61. Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  62. AMS collaboration, Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 091103 [INSPIRE].

  63. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

  64. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

  65. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A. Cuoco, J. Heisig, M. Korsmeier and M. Krämer, Constraining heavy dark matter with cosmic-ray antiprotons, JCAP 04 (2018) 004 [arXiv:1711.05274] [INSPIRE].

    Article  ADS  Google Scholar 

  67. CTA collaboration, Prospects for Indirect Dark Matter Searches with the Cherenkov Telescope Array (CTA), PoS ICRC2015 (2016) 1203 [arXiv:1508.06128] [INSPIRE].

  68. L. Rinchiuso, O. Macias, E. Moulin, N.L. Rodd and T.R. Slatyer, Prospects for detecting heavy WIMP dark matter with the Cherenkov Telescope Array: The Wino and Higgsino, Phys. Rev. D 103 (2021) 023011 [arXiv:2008.00692] [INSPIRE].

  69. J. Kawamura and S. Raby, Qualities of the axion and LSP in Pati-Salam unification with \( {\mathbb{Z}}_4^R \) × ℤN symmetry, Phys. Rev. D 103 (2021) 015002 [arXiv:2009.04582] [INSPIRE].

  70. M. Kawasaki, T. Watari and T. Yanagida, Vacuum instability in anomaly mediation models with massive neutrinos, Phys. Rev. D 63 (2001) 083510 [hep-ph/0010124] [INSPIRE].

  71. M. Kawasaki and K. Nakayama, Affleck-Dine baryogenesis in anomaly-mediated SUSY breaking, JCAP 02 (2007) 002 [hep-ph/0611320] [INSPIRE].

  72. ALEPH collaboration, Search for charginos nearly mass degenerate with the lightest neutralino in e+e− collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 533 (2002) 223 [hep-ex/0203020] [INSPIRE].

  73. M. Ibe, T. Moroi and T.T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

  74. R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP 06 (2017) 119 [Erratum JHEP 10 (2017) 061] [arXiv:1703.05327] [INSPIRE].

  75. H. Fukuda, N. Nagata, H. Otono and S. Shirai, Higgsino Dark Matter or Not: Role of Disappearing Track Searches at the LHC and Future Colliders, Phys. Lett. B 781 (2018) 306 [arXiv:1703.09675] [INSPIRE].

    Article  ADS  Google Scholar 

  76. ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature using 136 fb−1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2021-015 (2021).

  77. J. Kawamura and Y. Omura, Study of dark matter physics in non-universal gaugino mass scenario, JHEP 08 (2017) 072 [arXiv:1703.10379] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].

  79. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

  80. Y. Gouttenoire, G. Servant and P. Simakachorn, Revealing the Primordial Irreducible Inflationary Gravitational-Wave Background with a Spinning Peccei-Quinn Axion, arXiv:2108.10328 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Center for Theoretical Physics of the Universe, Institute for Basic Science, Daejeon, 34126, Korea

    Junichiro Kawamura

  2. Department of Physics, Keio University, Yokohama, 223-8522, Japan

    Junichiro Kawamura

  3. Department of Physics, Ohio State University, Columbus, Ohio, 43210, USA

    Stuart Raby

Authors
  1. Junichiro Kawamura
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stuart Raby
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Junichiro Kawamura.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2109.08605

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawamura, J., Raby, S. Lepto-axiogenesis in minimal SUSY KSVZ model. J. High Energ. Phys. 2022, 116 (2022). https://doi.org/10.1007/JHEP04(2022)116

Download citation

  • Received: 29 September 2021

  • Revised: 18 February 2022

  • Accepted: 19 March 2022

  • Published: 20 April 2022

  • DOI: https://doi.org/10.1007/JHEP04(2022)116

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Supersymmetric Standard Model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.