Skip to main content

A Rindler road to Carrollian worldsheets

A preprint version of the article is available at arXiv.

Abstract

The tensionless limit of string theory has recently been formulated in terms of worldsheet Rindler physics. In this paper, by considering closed strings moving in background Rindler spacetimes, we provide a concrete exemplification of this phenomenon. We first show that strings probing the near-horizon region of a generic non-extremal blackhole become tensionless thereby linking a spacetime Carroll limit to a worldsheet Carroll limit. Then, considering strings in d-dimensional Rindler spacetime we find a Rindler structure induced on the worldsheet. Novelties, including folds, appear on the closed string worldsheet pertaining to the formation of the worldsheet horizon. The closed string becomes segmented at these folding points and different segments go into the formation of closed strings in the different Rindler wedges. The Bondi-Metzner-Sachs (BMS) or the Conformal Carroll algebra emerges from the closed string Virasoro algebra as the horizon is hit. Quantum states on these accelerated worldsheets are discussed and we show the formation of boundary states from gluing conditions of the different segments of the accelerated closed string.

References

  1. Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875 (2019) L1 [arXiv:1906.11238] [INSPIRE].

  2. LIGO Scientific and Virgo collaborations, Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116 (2016) 241102 [arXiv:1602.03840] [INSPIRE].

  3. A. Bagchi, A. Banerjee and S. Chakrabortty, Rindler Physics on the String Worldsheet, Phys. Rev. Lett. 126 (2021) 031601 [arXiv:2009.01408] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].

    ADS  Article  Google Scholar 

  6. G. Barnich, A. Gomberoff and H. A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].

    ADS  Article  Google Scholar 

  7. A. Bagchi, S. Detournay and D. Grumiller, Flat-Space Chiral Gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].

    ADS  Article  Google Scholar 

  8. A. Bagchi, S. Detournay, R. Fareghbal and J. Simón, Holography of 3D Flat Cosmological Horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].

    ADS  Article  Google Scholar 

  9. G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10 (2012) 095 [arXiv:1208.4371] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. G. Barnich, A. Gomberoff and H. A. González, Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory, Phys. Rev. D 87 (2013) 124032 [arXiv:1210.0731] [INSPIRE].

    ADS  Article  Google Scholar 

  11. A. Bagchi, S. Detournay, D. Grumiller and J. Simon, Cosmic Evolution from Phase Transition of Three-Dimensional Flat Space, Phys. Rev. Lett. 111 (2013) 181301 [arXiv:1305.2919] [INSPIRE].

    ADS  Article  Google Scholar 

  12. A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114 (2015) 111602 [arXiv:1410.4089] [INSPIRE].

    ADS  Article  Google Scholar 

  13. J. Hartong, Gauging the Carroll Algebra and Ultra-Relativistic Gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. J. Hartong, Holographic Reconstruction of 3D Flat Space-Time, JHEP 10 (2016) 104 [arXiv:1511.01387] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat Holography: Aspects of the dual field theory, JHEP 12 (2016) 147 [arXiv:1609.06203] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. C. Duval, G. W. Gibbons and P. A. Horvathy, Conformal Carroll groups, J. Phys. A 47 (2014) 335204 [arXiv:1403.4213] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  17. C. Duval, G. W. Gibbons and P. A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. H. Bondi, M. G. J. van der Burg and A. W. K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  19. R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. J. de Boer, J. Hartong, N. A. Obers, W. Sybesma and S. Vandoren, Carroll symmetry, dark energy and inflation, arXiv:2110.02319 [INSPIRE].

  21. L. Donnay and C. Marteau, Carrollian Physics at the Black Hole Horizon, Class. Quant. Grav. 36 (2019) 165002 [arXiv:1903.09654] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. S. Carlip, Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon, Phys. Rev. Lett. 120 (2018) 101301 [arXiv:1702.04439] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. S. Carlip, Near-horizon Bondi-Metzner-Sachs symmetry, dimensional reduction, and black hole entropy, Phys. Rev. D 101 (2020) 046002 [arXiv:1910.01762] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. A. Bagchi, Tensionless Strings and Galilean Conformal Algebra, JHEP 05 (2013) 141 [arXiv:1303.0291] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. B. Cardona, J. Gomis and J. M. Pons, Dynamics of Carroll Strings, JHEP 07 (2016) 050 [arXiv:1605.05483] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav. 29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. H. J. de Vega and N. G. Sanchez, String Quantization in Accelerated Frames and Black Holes, Nucl. Phys. B 299 (1988) 818 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. N. G. Sanchez, Reparametrization Invariance, Analytic Mappings and the Hawking-unruh Effect in String Theory, Phys. Lett. B 195 (1987) 160 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. D. A. Lowe and A. Strominger, Strings near a Rindler or black hole horizon, Phys. Rev. D 51 (1995) 1793 [hep-th/9410215] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. A. Bagchi, A. Banerjee and P. Parekh, Tensionless Path from Closed to Open Strings, Phys. Rev. Lett. 123 (2019) 111601 [arXiv:1905.11732] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless Strings from Worldsheet Symmetries, JHEP 01 (2016) 158 [arXiv:1507.04361] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. A. Schild, Classical Null Strings, Phys. Rev. D 16 (1977) 1722 [INSPIRE].

    ADS  Article  Google Scholar 

  33. D. J. Gross and P. F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. D. J. Gross and P. F. Mende, The High-Energy Behavior of String Scattering Amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. D. J. Gross, High-Energy Symmetries of String Theory, Phys. Rev. Lett. 60 (1988) 1229 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. R. D. Pisarski and O. Alvarez, Strings at Finite Temperature and Deconfinement, Phys. Rev. D 26 (1982) 3735 [INSPIRE].

    ADS  Article  Google Scholar 

  37. J. Isberg, U. Lindström, B. Sundborg and G. Theodoridis, Classical and quantized tensionless strings, Nucl. Phys. B 411 (1994) 122 [hep-th/9307108] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. R. K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless Superstrings: View from the Worldsheet, JHEP 10 (2016) 113 [arXiv:1606.09628] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. A. Bagchi, A. Banerjee, S. Chakrabortty and P. Parekh, Inhomogeneous Tensionless Superstrings, JHEP 02 (2018) 065 [arXiv:1710.03482] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. A. Bagchi, A. Banerjee, S. Chakrabortty, S. Dutta and P. Parekh, A tale of three — tensionless strings and vacuum structure, JHEP 04 (2020) 061 [arXiv:2001.00354] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. A. Bagchi, M. Mandlik and P. Sharma, Tensionless tales: vacua and critical dimensions, JHEP 08 (2021) 054 [arXiv:2105.09682] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. A. Karlhede and U. Lindström, The Classical Bosonic String in the Zero Tension Limit, Class. Quant. Grav. 3 (1986) L73 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. F. Lizzi, B. Rai, G. Sparano and A. Srivastava, Quantization of the Null String and Absence of Critical Dimensions, Phys. Lett. B 182 (1986) 326 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. J. Gamboa, C. Ramirez and M. Ruiz-Altaba, Quantum null (super)strings, Phys. Lett. B 225 (1989) 335 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. H. Gustafsson, U. Lindström, P. Saltsidis, B. Sundborg and R. van Unge, Hamiltonian BRST quantization of the conformal string, Nucl. Phys. B 440 (1995) 495 [hep-th/9410143] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. U. Lindström and M. Zabzine, Tensionless strings, WZW models at critical level and massless higher spin fields, Phys. Lett. B 584 (2004) 178 [hep-th/0305098] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. P. Olesen, Strings, Tachyons and Deconfinement, Phys. Lett. B 160 (1985) 408 [INSPIRE].

    ADS  Article  Google Scholar 

  50. J. J. Atick and E. Witten, The Hagedorn Transition and the Number of Degrees of Freedom of String Theory, Nucl. Phys. B 310 (1988) 291 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036 [arXiv:1606.05636] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. M. B. Green, J. H. Schwarz and E. Witten, Superstring theory. Vol. 1: Introduction, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1988) [INSPIRE].

  53. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1984) [DOI] [INSPIRE].

  56. W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Article  Google Scholar 

  57. L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. L. Susskind and J. Uglum, Black holes, interactions, and strings, in Particles, Strings, and Cosmology (PASCOS 94), pp. 0254–270 (1994) [hep-th/9410074] [INSPIRE].

  60. A. Giveon and N. Itzhaki, Stringy Information and Black Holes, JHEP 06 (2020) 117 [arXiv:1912.06538] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. D. L. Jafferis and E. Schneider, Stringy ER = EPR, arXiv:2104.07233 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Banerjee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2111.01172

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagchi, A., Banerjee, A., Chakrabortty, S. et al. A Rindler road to Carrollian worldsheets. J. High Energ. Phys. 2022, 82 (2022). https://doi.org/10.1007/JHEP04(2022)082

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2022)082

Keywords

  • Bosonic Strings
  • Conformal and W Symmetry
  • Conformal Field Models in String Theory