Abstract
We present the leading-color two-loop QCD corrections for the scattering of four partons and a W boson, including its leptonic decay. The amplitudes are assembled from the planar two-loop helicity amplitudes for four partons and a vector boson decaying to a lepton pair, which are also used to determine the planar two-loop amplitudes for four partons and a Z/γ∗ boson with a leptonic decay. The analytic expressions are obtained by setting up a dedicated Ansatz and constraining the free parameters from numerical samples obtained within the framework of numerical unitarity. The large linear systems that must be solved to determine the analytic expressions are constructed to be in Vandermonde form. Such systems can be very efficiently solved, bypassing the bottleneck of Gaussian elimination. Our results are expressed in a basis of one-mass pentagon functions, which opens the possibility of their efficient numerical evaluation.
Article PDF
Similar content being viewed by others
References
ATLAS collaboration, Measurements of the W production cross sections in association with jets with the ATLAS detector, Eur. Phys. J. C 75 (2015) 82 [arXiv:1409.8639] [INSPIRE].
CMS collaboration, Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 96 (2017) 072005 [arXiv:1707.05979] [INSPIRE].
J. M. Campbell, R. K. Ellis and D. L. Rainwater, Next-to-leading order QCD predictions for W + 2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [INSPIRE].
C. F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].
F. R. Anger, F. Febres Cordero, S. Höche and D. Maître, Weak vector boson production with many jets at the LHC \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 97 (2018) 096010 [arXiv:1712.08621] [INSPIRE].
S. Kallweit, J. M. Lindert, P. Maierhofer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].
A. Tricoli, M. Schönherr and P. Azzurri, Vector bosons and jets in proton collisions, Rev. Mod. Phys. 93 (2021) 025007 [arXiv:2012.13967] [INSPIRE].
L. Di Giustino, S. J. Brodsky, S.-Q. Wang and X.-G. Wu, Infinite-order scale-setting using the principle of maximum conformality: a remarkably efficient method for eliminating renormalization scale ambiguities for perturbative QCD, Phys. Rev. D 102 (2020) 014015 [arXiv:2002.01789] [INSPIRE].
M. Bonvini, Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders, Eur. Phys. J. C 80 (2020) 989 [arXiv:2006.16293] [INSPIRE].
C. Duhr, A. Huss, A. Mazeliauskas and R. Szafron, An analysis of Bayesian estimates for missing higher orders in perturbative calculations, JHEP 09 (2021) 122 [arXiv:2106.04585] [INSPIRE].
Z. Bern, L. J. Dixon and D. A. Kosower, One loop amplitudes for e+ e− to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].
Z. Bern, L. J. Dixon, D. A. Kosower and S. Weinzierl, One loop amplitudes for e+ e− → \( \overline{q}q\overline{Q}Q \), Nucl. Phys. B 489 (1997) 3 [hep-ph/9610370] [INSPIRE].
E. W. N. Glover and D. J. Miller, The one loop QCD corrections for γ∗ → \( Q\overline{Q}q\overline{q} \), Phys. Lett. B 396 (1997) 257 [hep-ph/9609474] [INSPIRE].
J. M. Campbell, E. W. N. Glover and D. J. Miller, The one loop QCD corrections for γ∗ → \( q\overline{q} gg \), Phys. Lett. B 409 (1997) 503 [hep-ph/9706297] [INSPIRE].
H. B. Hartanto, S. Badger, C. Brønnum-Hansen and T. Peraro, A numerical evaluation of planar two-loop helicity amplitudes for a W -boson plus four partons, JHEP 09 (2019) 119 [arXiv:1906.11862] [INSPIRE].
S. Badger, H. B. Hartanto and S. Zoia, Two-loop QCD corrections to \( Wb\overline{b} \) production at hadron colliders, Phys. Rev. Lett. 127 (2021) 012001 [arXiv:2102.02516] [INSPIRE].
S. Badger, H. B. Hartanto, J. Kryś and S. Zoia, Two-loop leading-colour QCD helicity amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC, JHEP 11 (2021) 012 [arXiv:2107.14733] [INSPIRE].
K. G. Chetyrkin and F. V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
J. Gluza, K. Kajda and D. A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev. D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].
K. J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].
H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev. D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].
A. von Manteuffel and R. M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].
T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].
J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys. Commun. 247 (2020) 106951 [arXiv:1904.00009] [INSPIRE].
J. Klappert, S. Y. Klein and F. Lange, Interpolation of dense and sparse rational functions and other improvements in FireFly, Comput. Phys. Commun. 264 (2021) 107968 [arXiv:2004.01463] [INSPIRE].
T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP 07 (2019) 031 [arXiv:1905.08019] [INSPIRE].
S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-loop four-gluon amplitudes from numerical unitarity, Phys. Rev. Lett. 119 (2017) 142001 [arXiv:1703.05273] [INSPIRE].
S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].
S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic form of planar two-loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].
A. V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
J. M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar hexa-box integrals, JHEP 01 (2019) 006 [arXiv:1807.11522] [INSPIRE].
C. G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the simplified differential equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404] [INSPIRE].
S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, Two-loop integrals for planar five-point one-mass processes, JHEP 11 (2020) 117 [arXiv:2005.04195] [INSPIRE].
D. D. Canko, C. G. Papadopoulos and N. Syrrakos, Analytic representation of all planar two-loop five-point master integrals with one off-shell leg, JHEP 01 (2021) 199 [arXiv:2009.13917] [INSPIRE].
S. Abreu, H. Ita, B. Page and W. Tschernow, Two-loop hexa-box integrals for non-planar five-point one-mass processes, arXiv:2107.14180 [INSPIRE].
C. G. Papadopoulos and C. Wever, Internal reduction method for computing Feynman integrals, JHEP 02 (2020) 112 [arXiv:1910.06275] [INSPIRE].
D. Chicherin, V. Sotnikov and S. Zoia, Pentagon functions for one-mass planar scattering amplitudes, JHEP 01 (2022) 096 [arXiv:2110.10111] [INSPIRE].
F. Moriello, Generalised power series expansions for the elliptic planar families of Higgs + jet production at two loops, JHEP 01 (2020) 150 [arXiv:1907.13234] [INSPIRE].
M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions, Comput. Phys. Commun. 269 (2021) 108125 [arXiv:2006.05510] [INSPIRE].
T. Gehrmann, J. M. Henn and N. A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP 10 (2018) 103 [arXiv:1807.09812] [INSPIRE].
D. Chicherin and V. Sotnikov, Pentagon functions for scattering of five massless particles, JHEP 12 (2020) 167 [arXiv:2009.07803] [INSPIRE].
S. Abreu et al., Caravel: a C++ framework for the computation of multi-loop amplitudes with numerical unitarity, Comput. Phys. Commun. 267 (2021) 108069 [arXiv:2009.11957] [INSPIRE].
S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].
Ancillary files associated to the article webpage, http://www.hep.fsu.edu/∼ffebres/W4partons.
S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar two-loop five-parton amplitudes from numerical unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].
A. Broggio, C. Gnendiger, A. Signer, D. Stöckinger and A. Visconti, SCET approach to regularization-scheme dependence of QCD amplitudes, JHEP 01 (2016) 078 [arXiv:1506.05301] [INSPIRE].
S. Weinzierl, Does one need the O(ϵ)- and O(ϵ2)-terms of one-loop amplitudes in an NNLO calculation?, Phys. Rev. D 84 (2011) 074007 [arXiv:1107.5131] [INSPIRE].
R. M. Schabinger, A new algorithm for the generation of unitarity-compatible integration by parts relations, JHEP 01 (2012) 077 [arXiv:1111.4220] [INSPIRE].
M. Klinkert, Two-loop five-point amplitudes for vector-bosons and partons in QCD, Ph.D. thesis, to appear (2021).
A. Ochirov and B. Page, Full colour for loop amplitudes in Yang-Mills theory, JHEP 02 (2017) 100 [arXiv:1612.04366] [INSPIRE].
A. Ochirov and B. Page, Multi-quark colour decompositions from unitarity, JHEP 10 (2019) 058 [arXiv:1908.02695] [INSPIRE].
F. R. Anger and V. Sotnikov, On the dimensional regularization of QCD helicity amplitudes with quarks, arXiv:1803.11127 [INSPIRE].
S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic form of the planar two-loop five-parton scattering amplitudes in QCD, JHEP 05 (2019) 084 [arXiv:1904.00945] [INSPIRE].
V. Sotnikov, Scattering amplitudes with the multi-loop numerical unitarity method, Ph.D. thesis, Freiburg U., Freiburg, Germany (2019).
F. A. Berends and W. T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
C. Duhr, H. Gangl and J. R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].
M. Heller and A. von Manteuffel, MultivariateApart: generalized partial fractions, Comput. Phys. Commun. 271 (2022) 108174 [arXiv:2101.08283] [INSPIRE].
C. Gnendiger et al., To d, or not to d: recent developments and comparisons of regularization schemes, Eur. Phys. J. C 77 (2017) 471 [arXiv:1705.01827] [INSPIRE].
K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [INSPIRE].
H. Elvang, D. Z. Freedman and M. Kiermaier, Proof of the MHV vertex expansion for all tree amplitudes in N = 4 SYM theory, JHEP 06 (2009) 068 [arXiv:0811.3624] [INSPIRE].
B. Page, Sagex mathematica and maple schools: lectures on finite fields and large ansätze, https://indico.desy.de/event/28075/, January 2021.
R. K. Ellis, W. T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].
G. H. Hardy et al., An introduction to the theory of numbers, Oxford University Press, Oxford, U.K. (1979).
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes: the art of scientific computing, third edition, Cambridge University Press, Cambridge, U.K. (2007).
S. Abreu, L. J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].
S. Abreu, L. J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in N = 8 supergravity, JHEP 03 (2019) 123 [arXiv:1901.08563] [INSPIRE].
M. Ben-Or and P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, in Proceedings of the twentieth annual ACM symposium on theory of computing, (1988), p. 301.
D. Chicherin, J. M. Henn and G. Papathanasiou, Cluster algebras for Feynman integrals, Phys. Rev. Lett. 126 (2021) 091603 [arXiv:2012.12285] [INSPIRE].
A. V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
A. V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].
C. F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
S. A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].
S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Leading-color two-loop QCD corrections for three-jet production at hadron colliders, JHEP 07 (2021) 095 [arXiv:2102.13609] [INSPIRE].
M. Czakon, A. Mitov and R. Poncelet, Next-to-next-to-leading order study of three-jet production at the LHC, Phys. Rev. Lett. 127 (2021) 152001 [arXiv:2106.05331] [INSPIRE].
D. Kreimer, The γ5 problem and anomalies: a Clifford algebra approach, Phys. Lett. B 237 (1990) 59 [INSPIRE].
J. G. Korner, D. Kreimer and K. Schilcher, A practicable γ5 scheme in dimensional regularization, Z. Phys. C 54 (1992) 503 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2110.07541
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Abreu, S., Cordero, F.F., Ita, H. et al. Leading-color two-loop amplitudes for four partons and a W boson in QCD. J. High Energ. Phys. 2022, 42 (2022). https://doi.org/10.1007/JHEP04(2022)042
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2022)042