Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Fusion of interfaces in Landau-Ginzburg models: a functorial approach

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 April 2021
  • volume 2021, Article number: 235 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Fusion of interfaces in Landau-Ginzburg models: a functorial approach
Download PDF
  • Nicolas Behr  ORCID: orcid.org/0000-0002-8738-50401 &
  • Stefan Fredenhagen  ORCID: orcid.org/0000-0002-5744-85812,3 
  • 164 Accesses

  • 1 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

We investigate the fusion of B-type interfaces in two-dimensional supersymmetric Landau-Ginzburg models. In particular, we propose to describe the fusion of an interface in terms of a fusion functor that acts on the category of modules of the underlying polynomial rings of chiral superfields. This uplift of a functor on the category of matrix factorisations simplifies the actual computation of interface fusion. Besides a brief discussion of minimal models, we illustrate the power of this approach in the SU(3)/U(2) Kazama-Suzuki model where we find fusion functors for a set of elementary topological defects from which all rational B-type topological defects can be generated.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601 [cond-mat/0404051] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  2. C. P. Bachas, On the symmetries of classical string theory, talk given at the Workshop on Quantum Mechanics of Fundamental Systems: the Quest for Beauty and Simplicity , January 10–1,Valdivia, Chile (2009) [arXiv:0808.2777] [INSPIRE].

  3. C. Bachas, I. Brunner and D. Roggenkamp, A worldsheet extension of O(d, d : Z), JHEP 10 (2012) 039 [arXiv:1205.4647] [INSPIRE].

    Article  Google Scholar 

  4. J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Defect lines, dualities, and generalised orbifolds, arXiv:0909.5013 [INSPIRE].

  5. N. Carqueville and I. Runkel, Orbifold completion of defect bicategories, Quantum Topol. 7 (2016) 203 [arXiv:1210.6363] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Brunner, N. Carqueville and D. Plencner, Orbifolds and topological defects, Commun. Math. Phys. 332 (2014) 669 [arXiv:1307.3141] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Brunner, N. Carqueville and D. Plencner, A quick guide to defect orbifolds, Proc. Symp. Pure Math. 88 (2014) 231 [arXiv:1310.0062] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Brunner and D. Roggenkamp, Defects and bulk perturbations of boundary Landau-Ginzburg orbifolds, JHEP 04 (2008) 001 [arXiv:0712.0188] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Gaiotto, Domain walls for two-dimensional renormalization group flows, JHEP 12 (2012) 103 [arXiv:1201.0767] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Graham and G. M. T. Watts, Defect lines and boundary flows, JHEP 04 (2004) 019 [hep-th/0306167] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  11. C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  12. I. Runkel, Perturbed defects and T-systems in conformal field theory, J. Phys. A 41 (2008) 105401 [arXiv:0711.0102] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Bachas and S. Monnier, Defect loops in gauged Wess-Zumino-Witten models, JHEP 02 (2010) 003 [arXiv:0911.1562] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Brunner, D. Roggenkamp and S. Rossi, Defect perturbations in Landau-Ginzburg models, JHEP 03 (2010) 015 [arXiv:0909.0696] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Fredenhagen, M. R. Gaberdiel and C. Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009) 495403 [arXiv:0907.2560] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Vafa and N. P. Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Carqueville and D. Murfet, Computing Khovanov-Rozansky homology and defect fusion, Algebr. Geom. Topol. 14 (2014) 489 [arXiv:1108.1081] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Dyckerhoff and D. Murfet, Pushing forward matrix factorizations, Duke Math. J. 162 (2013) 1249 [arXiv:1102.2957] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Carqueville and D. Murfet, A toolkit for defect computations in Landau-Ginzburg models, Proc. Symp. Pure Math. 90 (2015) 239 [arXiv:1303.1389] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kontsevich, unpublished.

  22. A. Kapustin and Y. Li, D branes in Landau-Ginzburg models and algebraic geometry, JHEP 12 (2003) 005 [hep-th/0210296] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models math/0302304.

  24. I. Brunner, M. Herbst, W. Lerche and B. Scheuner, Landau-Ginzburg realization of open string TFT, JHEP 11 (2006) 043 [hep-th/0305133] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  25. A. Kapustin and Y. Li, Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003) 727 [hep-th/0305136] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  26. V. B. Petkova and J. B. Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Yoshino, Tensor products of matrix factorizations, Nagoya Math. J. 152 (1998) 39.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math/0401268].

  29. S. K. Ashok, E. Dell’Aquila and D.-E. Diaconescu, Fractional branes in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 8 (2004) 461 [hep-th/0401135] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Kapustin and L. Rozansky, On the relation between open and closed topological strings, Commun. Math. Phys. 252 (2004) 393 [hep-th/0405232] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Carqueville and I. Runkel, On the monoidal structure of matrix bi-factorisations, J. Phys. A 43 (2010) 275401 [arXiv:0909.4381] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Carqueville and D. Murfet, Adjunctions and defects in Landau-Ginzburg models, Adv. Math. 289 (2016) 480 [arXiv:1208.1481] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Behr and S. Fredenhagen, Variable transformation defects, Proc. Symp. Pure Math. 85 (2012) 303 [arXiv:1202.1678] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  34. A. Kapustin and Y. Li, D-branes in topological minimal models: The Landau-Ginzburg approach, JHEP 07 (2004) 045 [hep-th/0306001] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  35. I. Brunner and M. R. Gaberdiel, Matrix factorisations and permutation branes, JHEP 07 (2005) 012 [hep-th/0503207] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  36. Y. Kazama and H. Suzuki, Characterization of N = 2 superconformal models generated by coset space method, Phys. Lett. B 216 (1989) 112 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  37. Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  38. N. Behr and S. Fredenhagen, D-branes and matrix factorisations in supersymmetric coset models, JHEP 11 (2010) 136 [arXiv:1005.2117] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  39. J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  40. J. M. Maldacena, G. W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  41. H. Ishikawa, Boundary states in coset conformal field theories, Nucl. Phys. B 629 (2002) 209 [hep-th/0111230] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Ishikawa and T. Tani, Novel construction of boundary states in coset conformal field theories, Nucl. Phys. B 649 (2003) 205 [hep-th/0207177] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436 [hep-th/0301229] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Ishikawa and T. Tani, Twisted boundary states in Kazama-Suzuki models, Nucl. Phys. B 678 (2004) 363 [hep-th/0306227] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  45. P. D. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1999).

  46. M. R. Gaberdiel and T. Gannon, Boundary states for WZW models, Nucl. Phys. B 639 (2002) 471 [hep-th/0202067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Fredenhagen and V. Schomerus, On boundary RG flows in coset conformal field theories, Phys. Rev. D 67 (2003) 085001 [hep-th/0205011] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  48. W. Lerche, C. Vafa and N. P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  49. D. Gepner, Scalar field theory and string compactification, Nucl. Phys. B 322 (1989) 65 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  50. N. Behr and S. Fredenhagen, Matrix factorisations for rational boundary conditions by defect fusion, JHEP 05 (2015) 055 [arXiv:1407.7254] [INSPIRE].

    Article  MATH  Google Scholar 

  51. A. Davydov, A. R. Camacho and I. Runkel, N = 2 minimal conformal field theories and matrix bifactorisations of xd, Commun. Math. Phys. 357 (2018) 597 [arXiv:1409.2144] [INSPIRE].

    Article  MATH  Google Scholar 

  52. E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  53. D. Nemeschansky and N. P. Warner, Refining the elliptic genus, Phys. Lett. B 329 (1994) 53 [hep-th/9403047] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  54. H. Jockers and W. Lerche, Matrix factorizations, D-branes and their deformations, Nucl. Phys. B Proc. Suppl. 171 (2007) 196 [arXiv:0708.0157] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  55. M. Mackaay and Y. Yonezawa, sl(N)-web categories, arXiv:1306.6242.

  56. H. Wu, A colored sl(N)-homology for links in S3, arXiv:0907.0695.

  57. S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sułkowski, Sequencing BPS spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Université de Paris, CNRS, Institut de Recherche en Informatique Fondamentale, 8 Place Aurelie Nemours, 75205, Cedex 13, Paris, France

    Nicolas Behr

  2. University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090, Vienna, Austria

    Stefan Fredenhagen

  3. Erwin Schrödinger International Institute for Mathematics and Physics, University of Vienna, Boltzmanngasse 9, 1090, Vienna, Austria

    Stefan Fredenhagen

Authors
  1. Nicolas Behr
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Stefan Fredenhagen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Stefan Fredenhagen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.14225

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behr, N., Fredenhagen, S. Fusion of interfaces in Landau-Ginzburg models: a functorial approach. J. High Energ. Phys. 2021, 235 (2021). https://doi.org/10.1007/JHEP04(2021)235

Download citation

  • Received: 18 January 2021

  • Accepted: 26 March 2021

  • Published: 23 April 2021

  • DOI: https://doi.org/10.1007/JHEP04(2021)235

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Models in String Theory
  • D-branes
  • Field Theories in Lower Dimensions
  • Topological Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature