J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601 [cond-mat/0404051] [INSPIRE].
MathSciNet
Article
Google Scholar
C. P. Bachas, On the symmetries of classical string theory, talk given at the Workshop on Quantum Mechanics of Fundamental Systems: the Quest for Beauty and Simplicity , January 10–1,Valdivia, Chile (2009) [arXiv:0808.2777] [INSPIRE].
C. Bachas, I. Brunner and D. Roggenkamp, A worldsheet extension of O(d, d : Z), JHEP 10 (2012) 039 [arXiv:1205.4647] [INSPIRE].
Article
Google Scholar
J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Defect lines, dualities, and generalised orbifolds, arXiv:0909.5013 [INSPIRE].
N. Carqueville and I. Runkel, Orbifold completion of defect bicategories, Quantum Topol. 7 (2016) 203 [arXiv:1210.6363] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
I. Brunner, N. Carqueville and D. Plencner, Orbifolds and topological defects, Commun. Math. Phys. 332 (2014) 669 [arXiv:1307.3141] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
I. Brunner, N. Carqueville and D. Plencner, A quick guide to defect orbifolds, Proc. Symp. Pure Math. 88 (2014) 231 [arXiv:1310.0062] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
I. Brunner and D. Roggenkamp, Defects and bulk perturbations of boundary Landau-Ginzburg orbifolds, JHEP 04 (2008) 001 [arXiv:0712.0188] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
D. Gaiotto, Domain walls for two-dimensional renormalization group flows, JHEP 12 (2012) 103 [arXiv:1201.0767] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
K. Graham and G. M. T. Watts, Defect lines and boundary flows, JHEP 04 (2004) 019 [hep-th/0306167] [INSPIRE].
MathSciNet
Article
Google Scholar
C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [INSPIRE].
MathSciNet
Article
Google Scholar
I. Runkel, Perturbed defects and T-systems in conformal field theory, J. Phys. A 41 (2008) 105401 [arXiv:0711.0102] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
C. Bachas and S. Monnier, Defect loops in gauged Wess-Zumino-Witten models, JHEP 02 (2010) 003 [arXiv:0911.1562] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
I. Brunner, D. Roggenkamp and S. Rossi, Defect perturbations in Landau-Ginzburg models, JHEP 03 (2010) 015 [arXiv:0909.0696] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
S. Fredenhagen, M. R. Gaberdiel and C. Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009) 495403 [arXiv:0907.2560] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
C. Vafa and N. P. Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].
MathSciNet
Article
Google Scholar
I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
N. Carqueville and D. Murfet, Computing Khovanov-Rozansky homology and defect fusion, Algebr. Geom. Topol. 14 (2014) 489 [arXiv:1108.1081] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
T. Dyckerhoff and D. Murfet, Pushing forward matrix factorizations, Duke Math. J. 162 (2013) 1249 [arXiv:1102.2957] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
N. Carqueville and D. Murfet, A toolkit for defect computations in Landau-Ginzburg models, Proc. Symp. Pure Math. 90 (2015) 239 [arXiv:1303.1389] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
M. Kontsevich, unpublished.
A. Kapustin and Y. Li, D branes in Landau-Ginzburg models and algebraic geometry, JHEP 12 (2003) 005 [hep-th/0210296] [INSPIRE].
MathSciNet
Article
Google Scholar
D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models math/0302304.
I. Brunner, M. Herbst, W. Lerche and B. Scheuner, Landau-Ginzburg realization of open string TFT, JHEP 11 (2006) 043 [hep-th/0305133] [INSPIRE].
MathSciNet
Article
Google Scholar
A. Kapustin and Y. Li, Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003) 727 [hep-th/0305136] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
V. B. Petkova and J. B. Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
Y. Yoshino, Tensor products of matrix factorizations, Nagoya Math. J. 152 (1998) 39.
MathSciNet
MATH
Article
Google Scholar
M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math/0401268].
S. K. Ashok, E. Dell’Aquila and D.-E. Diaconescu, Fractional branes in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 8 (2004) 461 [hep-th/0401135] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
A. Kapustin and L. Rozansky, On the relation between open and closed topological strings, Commun. Math. Phys. 252 (2004) 393 [hep-th/0405232] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
N. Carqueville and I. Runkel, On the monoidal structure of matrix bi-factorisations, J. Phys. A 43 (2010) 275401 [arXiv:0909.4381] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
N. Carqueville and D. Murfet, Adjunctions and defects in Landau-Ginzburg models, Adv. Math. 289 (2016) 480 [arXiv:1208.1481] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
N. Behr and S. Fredenhagen, Variable transformation defects, Proc. Symp. Pure Math. 85 (2012) 303 [arXiv:1202.1678] [INSPIRE].
MathSciNet
Article
Google Scholar
A. Kapustin and Y. Li, D-branes in topological minimal models: The Landau-Ginzburg approach, JHEP 07 (2004) 045 [hep-th/0306001] [INSPIRE].
MathSciNet
Article
Google Scholar
I. Brunner and M. R. Gaberdiel, Matrix factorisations and permutation branes, JHEP 07 (2005) 012 [hep-th/0503207] [INSPIRE].
MathSciNet
Article
Google Scholar
Y. Kazama and H. Suzuki, Characterization of N = 2 superconformal models generated by coset space method, Phys. Lett. B 216 (1989) 112 [INSPIRE].
MathSciNet
Article
Google Scholar
Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].
MathSciNet
Article
Google Scholar
N. Behr and S. Fredenhagen, D-branes and matrix factorisations in supersymmetric coset models, JHEP 11 (2010) 136 [arXiv:1005.2117] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].
MathSciNet
Article
Google Scholar
J. M. Maldacena, G. W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].
MathSciNet
Article
Google Scholar
H. Ishikawa, Boundary states in coset conformal field theories, Nucl. Phys. B 629 (2002) 209 [hep-th/0111230] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
H. Ishikawa and T. Tani, Novel construction of boundary states in coset conformal field theories, Nucl. Phys. B 649 (2003) 205 [hep-th/0207177] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
S. Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436 [hep-th/0301229] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
H. Ishikawa and T. Tani, Twisted boundary states in Kazama-Suzuki models, Nucl. Phys. B 678 (2004) 363 [hep-th/0306227] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
P. D. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1999).
M. R. Gaberdiel and T. Gannon, Boundary states for WZW models, Nucl. Phys. B 639 (2002) 471 [hep-th/0202067] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
S. Fredenhagen and V. Schomerus, On boundary RG flows in coset conformal field theories, Phys. Rev. D 67 (2003) 085001 [hep-th/0205011] [INSPIRE].
MathSciNet
Article
Google Scholar
W. Lerche, C. Vafa and N. P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].
MathSciNet
Article
Google Scholar
D. Gepner, Scalar field theory and string compactification, Nucl. Phys. B 322 (1989) 65 [INSPIRE].
MathSciNet
Article
Google Scholar
N. Behr and S. Fredenhagen, Matrix factorisations for rational boundary conditions by defect fusion, JHEP 05 (2015) 055 [arXiv:1407.7254] [INSPIRE].
MATH
Article
Google Scholar
A. Davydov, A. R. Camacho and I. Runkel, N = 2 minimal conformal field theories and matrix bifactorisations of xd, Commun. Math. Phys. 357 (2018) 597 [arXiv:1409.2144] [INSPIRE].
MATH
Article
Google Scholar
E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
D. Nemeschansky and N. P. Warner, Refining the elliptic genus, Phys. Lett. B 329 (1994) 53 [hep-th/9403047] [INSPIRE].
MathSciNet
Article
Google Scholar
H. Jockers and W. Lerche, Matrix factorizations, D-branes and their deformations, Nucl. Phys. B Proc. Suppl. 171 (2007) 196 [arXiv:0708.0157] [INSPIRE].
MathSciNet
Article
Google Scholar
M. Mackaay and Y. Yonezawa, sl(N)-web categories, arXiv:1306.6242.
H. Wu, A colored sl(N)-homology for links in S3, arXiv:0907.0695.
S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sułkowski, Sequencing BPS spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar