Skip to main content

Fusion of interfaces in Landau-Ginzburg models: a functorial approach

A preprint version of the article is available at arXiv.

Abstract

We investigate the fusion of B-type interfaces in two-dimensional supersymmetric Landau-Ginzburg models. In particular, we propose to describe the fusion of an interface in terms of a fusion functor that acts on the category of modules of the underlying polynomial rings of chiral superfields. This uplift of a functor on the category of matrix factorisations simplifies the actual computation of interface fusion. Besides a brief discussion of minimal models, we illustrate the power of this approach in the SU(3)/U(2) Kazama-Suzuki model where we find fusion functors for a set of elementary topological defects from which all rational B-type topological defects can be generated.

References

  1. J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Kramers-Wannier duality from conformal defects, Phys. Rev. Lett. 93 (2004) 070601 [cond-mat/0404051] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  2. C. P. Bachas, On the symmetries of classical string theory, talk given at the Workshop on Quantum Mechanics of Fundamental Systems: the Quest for Beauty and Simplicity , January 10–1,Valdivia, Chile (2009) [arXiv:0808.2777] [INSPIRE].

  3. C. Bachas, I. Brunner and D. Roggenkamp, A worldsheet extension of O(d, d : Z), JHEP 10 (2012) 039 [arXiv:1205.4647] [INSPIRE].

    Article  Google Scholar 

  4. J. Fröhlich, J. Fuchs, I. Runkel and C. Schweigert, Defect lines, dualities, and generalised orbifolds, arXiv:0909.5013 [INSPIRE].

  5. N. Carqueville and I. Runkel, Orbifold completion of defect bicategories, Quantum Topol. 7 (2016) 203 [arXiv:1210.6363] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  6. I. Brunner, N. Carqueville and D. Plencner, Orbifolds and topological defects, Commun. Math. Phys. 332 (2014) 669 [arXiv:1307.3141] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  7. I. Brunner, N. Carqueville and D. Plencner, A quick guide to defect orbifolds, Proc. Symp. Pure Math. 88 (2014) 231 [arXiv:1310.0062] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  8. I. Brunner and D. Roggenkamp, Defects and bulk perturbations of boundary Landau-Ginzburg orbifolds, JHEP 04 (2008) 001 [arXiv:0712.0188] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  9. D. Gaiotto, Domain walls for two-dimensional renormalization group flows, JHEP 12 (2012) 103 [arXiv:1201.0767] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  10. K. Graham and G. M. T. Watts, Defect lines and boundary flows, JHEP 04 (2004) 019 [hep-th/0306167] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  11. C. Bachas and M. Gaberdiel, Loop operators and the Kondo problem, JHEP 11 (2004) 065 [hep-th/0411067] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  12. I. Runkel, Perturbed defects and T-systems in conformal field theory, J. Phys. A 41 (2008) 105401 [arXiv:0711.0102] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  13. C. Bachas and S. Monnier, Defect loops in gauged Wess-Zumino-Witten models, JHEP 02 (2010) 003 [arXiv:0911.1562] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  14. I. Brunner, D. Roggenkamp and S. Rossi, Defect perturbations in Landau-Ginzburg models, JHEP 03 (2010) 015 [arXiv:0909.0696] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  15. S. Fredenhagen, M. R. Gaberdiel and C. Schmidt-Colinet, Bulk flows in Virasoro minimal models with boundaries, J. Phys. A 42 (2009) 495403 [arXiv:0907.2560] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  16. C. Vafa and N. P. Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  17. I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  18. N. Carqueville and D. Murfet, Computing Khovanov-Rozansky homology and defect fusion, Algebr. Geom. Topol. 14 (2014) 489 [arXiv:1108.1081] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  19. T. Dyckerhoff and D. Murfet, Pushing forward matrix factorizations, Duke Math. J. 162 (2013) 1249 [arXiv:1102.2957] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  20. N. Carqueville and D. Murfet, A toolkit for defect computations in Landau-Ginzburg models, Proc. Symp. Pure Math. 90 (2015) 239 [arXiv:1303.1389] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  21. M. Kontsevich, unpublished.

  22. A. Kapustin and Y. Li, D branes in Landau-Ginzburg models and algebraic geometry, JHEP 12 (2003) 005 [hep-th/0210296] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  23. D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models math/0302304.

  24. I. Brunner, M. Herbst, W. Lerche and B. Scheuner, Landau-Ginzburg realization of open string TFT, JHEP 11 (2006) 043 [hep-th/0305133] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  25. A. Kapustin and Y. Li, Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys. 7 (2003) 727 [hep-th/0305136] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  26. V. B. Petkova and J. B. Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (2001) 157 [hep-th/0011021] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  27. Y. Yoshino, Tensor products of matrix factorizations, Nagoya Math. J. 152 (1998) 39.

    MathSciNet  MATH  Article  Google Scholar 

  28. M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math/0401268].

  29. S. K. Ashok, E. Dell’Aquila and D.-E. Diaconescu, Fractional branes in Landau-Ginzburg orbifolds, Adv. Theor. Math. Phys. 8 (2004) 461 [hep-th/0401135] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  30. A. Kapustin and L. Rozansky, On the relation between open and closed topological strings, Commun. Math. Phys. 252 (2004) 393 [hep-th/0405232] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  31. N. Carqueville and I. Runkel, On the monoidal structure of matrix bi-factorisations, J. Phys. A 43 (2010) 275401 [arXiv:0909.4381] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  32. N. Carqueville and D. Murfet, Adjunctions and defects in Landau-Ginzburg models, Adv. Math. 289 (2016) 480 [arXiv:1208.1481] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. N. Behr and S. Fredenhagen, Variable transformation defects, Proc. Symp. Pure Math. 85 (2012) 303 [arXiv:1202.1678] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  34. A. Kapustin and Y. Li, D-branes in topological minimal models: The Landau-Ginzburg approach, JHEP 07 (2004) 045 [hep-th/0306001] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  35. I. Brunner and M. R. Gaberdiel, Matrix factorisations and permutation branes, JHEP 07 (2005) 012 [hep-th/0503207] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  36. Y. Kazama and H. Suzuki, Characterization of N = 2 superconformal models generated by coset space method, Phys. Lett. B 216 (1989) 112 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  37. Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  38. N. Behr and S. Fredenhagen, D-branes and matrix factorisations in supersymmetric coset models, JHEP 11 (2010) 136 [arXiv:1005.2117] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  39. J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  40. J. M. Maldacena, G. W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  41. H. Ishikawa, Boundary states in coset conformal field theories, Nucl. Phys. B 629 (2002) 209 [hep-th/0111230] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  42. H. Ishikawa and T. Tani, Novel construction of boundary states in coset conformal field theories, Nucl. Phys. B 649 (2003) 205 [hep-th/0207177] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  43. S. Fredenhagen, Organizing boundary RG flows, Nucl. Phys. B 660 (2003) 436 [hep-th/0301229] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  44. H. Ishikawa and T. Tani, Twisted boundary states in Kazama-Suzuki models, Nucl. Phys. B 678 (2004) 363 [hep-th/0306227] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  45. P. D. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1999).

  46. M. R. Gaberdiel and T. Gannon, Boundary states for WZW models, Nucl. Phys. B 639 (2002) 471 [hep-th/0202067] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  47. S. Fredenhagen and V. Schomerus, On boundary RG flows in coset conformal field theories, Phys. Rev. D 67 (2003) 085001 [hep-th/0205011] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  48. W. Lerche, C. Vafa and N. P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  49. D. Gepner, Scalar field theory and string compactification, Nucl. Phys. B 322 (1989) 65 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  50. N. Behr and S. Fredenhagen, Matrix factorisations for rational boundary conditions by defect fusion, JHEP 05 (2015) 055 [arXiv:1407.7254] [INSPIRE].

    MATH  Article  Google Scholar 

  51. A. Davydov, A. R. Camacho and I. Runkel, N = 2 minimal conformal field theories and matrix bifactorisations of xd, Commun. Math. Phys. 357 (2018) 597 [arXiv:1409.2144] [INSPIRE].

    MATH  Article  Google Scholar 

  52. E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  53. D. Nemeschansky and N. P. Warner, Refining the elliptic genus, Phys. Lett. B 329 (1994) 53 [hep-th/9403047] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  54. H. Jockers and W. Lerche, Matrix factorizations, D-branes and their deformations, Nucl. Phys. B Proc. Suppl. 171 (2007) 196 [arXiv:0708.0157] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  55. M. Mackaay and Y. Yonezawa, sl(N)-web categories, arXiv:1306.6242.

  56. H. Wu, A colored sl(N)-homology for links in S3, arXiv:0907.0695.

  57. S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sułkowski, Sequencing BPS spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Fredenhagen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.14225

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behr, N., Fredenhagen, S. Fusion of interfaces in Landau-Ginzburg models: a functorial approach. J. High Energ. Phys. 2021, 235 (2021). https://doi.org/10.1007/JHEP04(2021)235

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2021)235

Keywords

  • Conformal Field Models in String Theory
  • D-branes
  • Field Theories in Lower Dimensions
  • Topological Field Theories