Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Non-equilibrium effective field theory and second sound

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 21 April 2021
  • volume 2021, Article number: 213 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Non-equilibrium effective field theory and second sound
Download PDF
  • Michael J. Landry1 
  • 222 Accesses

  • 4 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We investigate the phenomenon of second sound in various states of matter from the perspective of non-equilibrium effective field theory (EFT). In particular, for each state of matter considered, we find that at least two (though sometimes multiple) qualitatively different EFTs exist at finite temperature such that there is always at least one EFT with a propagating second-sound wave and at least one with no such second-sound wave. To aid in the construction of these EFTs, we use the method of cosets developed for non-equilibrium systems. It turns out that the difference between the EFTs with and without second-sound modes can be understood as arising from different choices of a new kind of inverse Higgs constraint. Finally, we demonstrate that it is possible to bypass the need for new inverse Higgs constraints by formulating EFTs on a new kind of manifold that is like the usual fluid worldvolume, but with reduced gauge symmetries.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoS TASI2017 (2018) 008 [arXiv:1805.09331] [INSPIRE].

  2. P. Glorioso, M. Crossley and H. Liu, Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current, JHEP 09 (2017) 096 [arXiv:1701.07817] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (2017) 095 [arXiv:1511.03646] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Glorioso, H. Liu and S. Rajagopal, Global Anomalies, Discrete Symmetries and Hydrodynamic Effective Actions, JHEP 01 (2019) 043 [arXiv:1710.03768] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Gao, P. Glorioso and H. Liu, Ghostbusters: Unitarity and Causality of Non-equilibrium Effective Field Theories, JHEP 03 (2020) 040 [arXiv:1803.10778] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].

  7. M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP 10 (2018) 127 [arXiv:1801.00010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M.J. Landry, The coset construction for non-equilibrium systems, JHEP 07 (2020) 200 [arXiv:1912.12301] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M.J. Landry, Dynamical chemistry: non-equilibrium effective actions for reactive fluids, arXiv:2006.13220 [INSPIRE].

  10. M. Baggioli and M. Landry, Effective Field Theory for Quasicrystals and Phasons Dynamics, SciPost Phys. 9 (2020) 062 [arXiv:2008.05339] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2019), [DOI] [arXiv:1712.05815] [INSPIRE].

  12. M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP 07 (2015) 025 [arXiv:1502.03076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic dissipative hydrodynamics, JHEP 07 (2014) 123 [arXiv:1405.3967] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. F.M. Haehl, R. Loganayagam and M. Rangamani, Two roads to hydrodynamic effective actions: a comparison, arXiv:1701.07896 [INSPIRE].

  18. F.M. Haehl, R. Loganayagam and M. Rangamani, Effective Action for Relativistic Hydrodynamics: Fluctuations, Dissipation and Entropy Inflow, JHEP 10 (2018) 194 [arXiv:1803.11155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. F.M. Haehl, R. Loganayagam and M. Rangamani, The Fluid Manifesto: Emergent symmetries, hydrodynamics and black holes, JHEP 01 (2016) 184 [arXiv:1510.02494] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, JHEP 09 (2018) 127 [arXiv:1701.07436] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, A panoply of Schwinger-Keldysh transport, SciPost Phys. 5 (2018) 053 [arXiv:1804.04654] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Hongo, S. Kim, T. Noumi and A. Ota, Effective Lagrangian for Nambu-Goldstone modes in nonequilibrium open systems, Phys. Rev. D 103 (2021) 056020 [arXiv:1907.08609] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3.

    MathSciNet  Google Scholar 

  24. T. Hayata, Y. Hidaka, T. Noumi and M. Hongo, Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method, Phys. Rev. D 92 (2015) 065008 [arXiv:1503.04535] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Hongo, Path-integral formula for local thermal equilibrium, Annals Phys. 383 (2017) 1 [arXiv:1611.07074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Hongo, Nonrelativistic hydrodynamics from quantum field theory: (I) Normal fluid composed of spinless Schrödinger fields, arXiv:1801.06520 [INSPIRE].

  27. S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Nicolis, R. Penco, F. Piazza and R.A. Rosen, More on gapped Goldstones at finite density: More gapped Goldstones, JHEP 11 (2013) 055 [arXiv:1306.1240] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Nicolis, Low-energy effective field theory for finite-temperature relativistic superfluids, arXiv:1108.2513 [INSPIRE].

  32. R.A. Guyer and J.A. Krumhansl, Phenomenological Lagrangians, Phys. Rev. 148 (1966) 778.

    Article  ADS  Google Scholar 

  33. S. Huberman, R.A. Duncan, K. Chen, B. Song, V. Chiloyan, Z Ding, A.A. Maznev, G Chen and K.A. Nelson, Observation of second sound in graphite at temperatures above 100 K, Science 364 (2019) 375.

  34. J. Armas and A. Jain, Hydrodynamics for charge density waves and their holographic duals, Phys. Rev. D 101 (2020) 121901 [arXiv:2001.07357] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Armas and A. Jain, Viscoelastic hydrodynamics and holography, JHEP 01 (2020) 126 [arXiv:1908.01175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. V.I. Ogievetsky, Nonlinear realizations of internal and space-time symmetries, in 10th winter school of theoretical physics in Karpacz, Poland. (1974).

  37. E. Ivanov and V. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz. 25 (1975) 1050.

    Article  MathSciNet  Google Scholar 

  38. I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Endlich, A. Nicolis and R. Penco, Ultraviolet completion without symmetry restoration, Phys. Rev. D 89 (2014) 065006 [arXiv:1311.6491] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Steven Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, U.K. (1996) DOI.

  41. L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the Relativistic Wheel: Gravity, Cosets and Spinning Objects, JHEP 11 (2014) 008 [arXiv:1405.7384] [INSPIRE].

  42. A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, Cambridge, U.K. (2011) DOI.

  43. M. Greiter, F. Wilczek and E. Witten, Hydrodynamic Relations in Superconductivity, Mod. Phys. Lett. B 3 (1989) 903 [INSPIRE].

    Article  ADS  Google Scholar 

  44. D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].

  45. P.C. Martin, O. Parodi and P.S. Pershan, Unified Hydrodynamic Theory for Crystals, Liquid Crystals and Normal Fluids, Phys. Rev. A 2401, (1972) 6.

    Google Scholar 

  46. R. Holyst, A. Poniewierski, On the elastic free energy for smectic-A liquid crystals, J. Phys. II France 3 (1993) 177.

    Article  Google Scholar 

  47. L.P. Pitaevskiῐ, Second Sound in Solids, Sov. Phys. Usp. 342, (1968) 3.

  48. K.B. Efetov, Mean-field thermodynamic quantum time-space crystal: spontaneous breaking of time-translation symmetry in a macroscopic fermion system, Phys. Rev. B 100 (2019) 245128 [arXiv:1905.04128] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Center for Theoretical Physics, Columbia University, 538W 120th Street, New York, NY, 10027, USA

    Michael J. Landry

Authors
  1. Michael J. Landry
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michael J. Landry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2008.11725

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, M.J. Non-equilibrium effective field theory and second sound. J. High Energ. Phys. 2021, 213 (2021). https://doi.org/10.1007/JHEP04(2021)213

Download citation

  • Received: 10 March 2021

  • Accepted: 23 March 2021

  • Published: 21 April 2021

  • DOI: https://doi.org/10.1007/JHEP04(2021)213

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Effective Field Theories
  • Quantum Dissipative Systems
  • Thermal Field Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature