Skip to main content

Kaluza-Klein spectroscopy for the Leigh-Strassler SCFT

A preprint version of the article is available at arXiv.

Abstract

We apply recently developed tools from exceptional field theory to calculate the full Kaluza-Klein spectrum of the AdS5 Pilch-Warner solution of type IIB supergravity. Through the AdS/CFT correspondence this yields detailed information about the spectrum of protected and unprotected operators of the four-dimensional \( \mathcal{N} \) = 1 Leigh-Strassler SCFT, in the planar limit. We also calculate explicitly the superconformal index of the SCFT in this limit and show that it agrees precisely with the spectrum of protected operators in the supergravity calculation.

References

  1. R. G. Leigh and M. J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  2. D. Z. Freedman, S. S. Gubser, K. Pilch and N. P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  3. M. Günaydin, L. J. Romans and N. P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  4. M. Günaydin, L. J. Romans and N. P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].

    Article  Google Scholar 

  5. M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8, D = 5 supergravity, Nucl. Phys. B 259 (1985) 460 [INSPIRE].

    Article  Google Scholar 

  6. A. Khavaev, K. Pilch and N. P. Warner, New vacua of gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  7. K. Pilch and N. P. Warner, A new supersymmetric compactification of chiral IIB supergravity, Phys. Lett. B 487 (2000) 22 [hep-th/0002192] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  8. K. Pilch and N. P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  9. K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  10. A. Baguet, O. Hohm and H. Samtleben, Consistent type IIB reductions to maximal 5D supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  11. H. J. Kim, L. J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2, D = 10 supergravity on S5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  12. M. Günaydin and N. Marcus, The spectrum of the S5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2, 2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  13. P. van Nieuwenhuizen, The compactification of IIB supergravity on S5 revisted, in Strings, gauge fields, and the geometry behind: the legacy of Maximilian Kreuzer, A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov and E. Scheidegger eds., World Scientific, Singapore (2012) [arXiv:1206.2667] [INSPIRE].

  14. E. Malek and H. Samtleben, Kaluza-Klein spectrometry for supergravity, Phys. Rev. Lett. 124 (2020) 101601 [arXiv:1911.12640] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  15. E. Malek and H. Samtleben, Kaluza-Klein spectrometry from exceptional field theory, Phys. Rev. D 102 (2020) 106016 [arXiv:2009.03347] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  16. O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].

    Article  Google Scholar 

  17. O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  18. N. Bobev, F. F. Gautason and J. Van Muiden, Precision holography for N = 2 on S4 from type IIB supergravity, JHEP 04 (2018) 148 [arXiv:1802.09539] [INSPIRE].

    MATH  Article  Google Scholar 

  19. M. Petrini, H. Samtleben, S. Schmidt and K. Skenderis, The 10d uplift of the GPPZ solution, JHEP 07 (2018) 026 [arXiv:1805.01919] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  20. N. Bobev, F. F. Gautason, B. E. Niehoff and J. van Muiden, Uplifting GPPZ: a ten-dimensional dual of N = 1 , JHEP 10 (2018) 058 [arXiv:1805.03623] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  21. N. Bobev, F. F. Gautason, B. E. Niehoff and J. van Muiden, A holographic kaleidoscope for N = 1, JHEP 10 (2019) 185 [arXiv:1906.09270] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  22. N. Bobev, F. F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in N = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  23. E. Malek, H. Nicolai and H. Samtleben, Tachyonic Kaluza-Klein modes and the AdS swampland conjecture, JHEP 08 (2020) 159 [arXiv:2005.07713] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  24. A. Guarino, E. Malek and H. Samtleben, Stable nonsupersymmetric anti-de Sitter vacua of massive IIA supergravity, Phys. Rev. Lett. 126 (2021) 061601 [arXiv:2011.06600] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  25. M. Cesàro and O. Varela, Kaluza-Klein fermion mass matrices from exceptional field theory and N = 1 spectra, JHEP 03 (2021) 138 [arXiv:2012.05249] [INSPIRE].

    MATH  Article  Google Scholar 

  26. C. Eloy, Kaluza-Klein spectrometry for AdS3 vacua, arXiv:2011.11658 [INSPIRE].

  27. L. J. Romans, New compactifications of chiral N = 2, d = 10 supergravity, Phys. Lett. B 153 (1985) 392 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  28. I. R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    MATH  Article  Google Scholar 

  29. S. S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006 [hep-th/9807164] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  30. A. Ceresole, G. Dall’Agata and R. D’Auria, K K spectroscopy of type IIB supergravity on AdS5 × T11, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].

    MATH  Article  Google Scholar 

  31. A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS5 × T11: predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  32. I. R. Klebanov, S. S. Pufu and F. D. Rocha, The squashed, stretched, and warped gets perturbed, JHEP 06 (2009) 019 [arXiv:0904.1009] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  34. J. Kinney, J. M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  35. A. Gadde, L. Rastelli, S. S. Razamat and W. Yan, On the superconformal index of N = 1 IR fixed points: a holographic check, JHEP 03 (2011) 041 [arXiv:1011.5278] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  36. K. A. Intriligator, Bonus symmetries of N = 4 super Yang-Mills correlation functions via AdS duality, Nucl. Phys. B 551 (1999) 575 [hep-th/9811047] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  37. C. Krishnan, V. Mohan and S. Ray, Machine learning N = 8, D = 5 gauged supergravity, Fortsch. Phys. 68 (2020) 2000027 [arXiv:2002.12927] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  38. N. Bobev, T. Fischbacher, F. F. Gautason and K. Pilch, A cornucopia of AdS5 vacua, JHEP 07 (2020) 240 [arXiv:2003.03979] [INSPIRE].

    MATH  Article  Google Scholar 

  39. Y. Tachikawa and B. Wecht, Explanation of the central charge ratio 27/32 in four-dimensional renormalization group flows between superconformal theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  40. C. Cordova, T. T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  41. E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2001): strings, branes and EXTRA dimensions, (2002) [hep-th/0201253] [INSPIRE].

  42. D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  43. E. Perlmutter, L. Rastelli, C. Vafa and I. Valenzuela, A CFT distance conjecture, arXiv:2011.10040 [INSPIRE].

  44. R. Corrado, K. Pilch and N. P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  45. S. S. Gubser, I. R. Klebanov and A. A. Tseytlin, String theory and classical absorption by three-branes, Nucl. Phys. B 499 (1997) 217 [hep-th/9703040] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  46. N. R. Constable and R. C. Myers, Spin two glueballs, positive energy theorems and the AdS/CFT correspondence, JHEP 10 (1999) 037 [hep-th/9908175] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  47. L. Rastelli and S. S. Razamat, The supersymmetric index in four dimensions, J. Phys. A 50 (2017) 443013 [arXiv:1608.02965] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  48. C. Romelsberger, Calculating the superconformal index and Seiberg duality, arXiv:0707.3702 [INSPIRE].

  49. Y. Nakayama, Index for supergravity on AdS5 × T1,1 and conifold gauge theory, Nucl. Phys. B 755 (2006) 295 [hep-th/0602284] [INSPIRE].

    MATH  Article  Google Scholar 

  50. Y. Nakayama, Index for orbifold quiver gauge theories, Phys. Lett. B 636 (2006) 132 [hep-th/0512280] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  51. R. Corrado and N. Halmagyi, N = 1 field theories and fluxes in IIB string theory, Phys. Rev. D 71 (2005) 046001 [hep-th/0401141] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  52. S. Benvenuti and A. Hanany, Conformal manifolds for the conifold and other toric field theories, JHEP 08 (2005) 024 [hep-th/0502043] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  53. N. Halmagyi, K. Pilch, C. Romelsberger and N. P. Warner, Holographic duals of a family of N = 1 fixed points, JHEP 08 (2006) 083 [hep-th/0506206] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  54. N. Bobev, E. Malek, B. Robinson, H. Samtleben and J. Van Muiden, work in progress.

  55. L. F. Alday and E. Perlmutter, Growing extra dimensions in AdS/CFT, JHEP 08 (2019) 084 [arXiv:1906.01477] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  56. B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043 [arXiv:1503.05537] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  57. N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir energy and the anomaly polynomial, JHEP 09 (2015) 142 [arXiv:1507.08553] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  58. S. M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS5, JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].

    MATH  Article  Google Scholar 

  59. A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5 black holes, JHEP 10 (2019) 062 [arXiv:1810.11442] [INSPIRE].

    MATH  Article  Google Scholar 

  60. S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].

  61. F. Benini and P. Milan, Black holes in 4D N = 4 super-Yang-Mills field theory, Phys. Rev. X 10 (2020) 021037 [arXiv:1812.09613] [INSPIRE].

    Google Scholar 

  62. J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2 × S3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  63. O. Lunin and J. M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  64. R. Eager, J. Schmude and Y. Tachikawa, Superconformal indices, Sasaki-Einstein manifolds, and cyclic homologies, Adv. Theor. Math. Phys. 18 (2014) 129 [arXiv:1207.0573] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  65. R. Eager, Superconformal field theories and cyclic homology, Proc. Symp. Pure Math. 93 (2015) 141 [arXiv:1510.04078] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  66. H. Kihara, M. Sakaguchi and Y. Yasui, Scalar Laplacian on Sasaki-Einstein manifolds Yp,q, Phys. Lett. B 621 (2005) 288 [hep-th/0505259] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  67. F. Chen, K. Dasgupta, A. Enciso, N. Kamran and J. Seo, On the scalar spectrum of the Yp,q manifolds, JHEP 05 (2012) 009 [arXiv:1201.5394] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  68. V. K. Dobrev and V. B. Petkova, All positive energy unitary irreducible representations of extended conformal supersymmetry, Phys. Lett. B 162 (1985) 127 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  69. V. K. Dobrev, Characters of the positive energy UIRs of D = 4 conformal supersymmetry, Phys. Part. Nucl. 38 (2007) 564 [hep-th/0406154] [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesse van Muiden.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.07089

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bobev, N., Malek, E., Robinson, B. et al. Kaluza-Klein spectroscopy for the Leigh-Strassler SCFT. J. High Energ. Phys. 2021, 208 (2021). https://doi.org/10.1007/JHEP04(2021)208

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2021)208

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory
  • Gauge-gravity correspondence
  • Supersymmetric Gauge Theory