Skip to main content

Probing P and CP violations on the cosmological collider

A preprint version of the article is available at arXiv.


In direct analogy to the 4-body decay of a heavy scalar particle, the 4-point correlation function of primordial fluctuations carries P and CP information. The CP violation appears as a P-odd angular dependence in the imaginary part of the trispectrum in momentum space. We construct a model with axion-like couplings which leads to observably large CP-violating trispectrum for future surveys. Furthermore, we show the importance of on-shell particle production in observing P- and CP-violating signals. It is impossible to observe these signals from local 4-scalar EFT operators that respect dilation symmetry, and thus any such observation can rule out single-field EFT with sufficiently small slow-roll parameters. This calculation opens a new frontier of studying P and CP at very high energy scales.


  1. T.D. Lee and C.-N. Yang, Question of Parity Conservation in Weak Interactions, Phys. Rev.104 (1956) 254 [INSPIRE].

  2. J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Evidence for the 21r Decay of the \( {K}_2^0 \)Meson, Phys. Rev. Lett.13 (1964) 138 [INSPIRE].

  3. J.S. Schwinger, The theory of quantized fields. 1, Phys. Rev.82 (1951) 914 [INSPIRE].

  4. J.S. Bell, Time reversal in field theory , Proc. Roy. Soc. Land.A 231 (1955) 479.

  5. M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Frog. Theor. Phys.49 (1973) 652 [INSPIRE].

  6. C.A. Baker et al., An improved ex perimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett.97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

  7. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [mSPIRE].

  8. S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].

  9. F. Wilczek , Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].

  10. C.-N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons, Phys. Rev.77 (1950) 242 [INSPIRE].

  11. R.H. Dalitz, On an alternative decay process for the neutral π-meson, Letters to the Editor, Proc. Phys. Soc.A 64 (1951) 667 [INSPIRE].

  12. I. Dunietz, H.R. Quinn, A. Snyder, W. Toki and H.J. Lipkin, How to extract CP-violating asymmetries from angular correlations, Phys. Rev.D 43 (1991) 2193 [INSPIRE].

  13. G. Kramer and W.F. Palmer, Branching ratios and CP asymmetries in the decay B → V V , Phys. Rev.D 45 (1992) 193 [INSPIRE].

  14. J.R. Dell’Aquila and C.A. Nelson, P or C P determination by sequential decays: V1V2modes with decays into \( {\overline{\mathrm{\ell}}}_A{\mathrm{\ell}}_B \)and/or \( {\overline{q}}_A{q}_B \), Phys. Rev.D 33 (1986) 80 [INSPIRE].

  15. A. Soni and R.M. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev.D 48 (1993) 5259 [hep-ph/9301225] [INSPIRE].

  16. V.D. Barger, K.-m. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: Intermediate mass range at e+ecolliders, Phys. Rev.D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].

  17. S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett.B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

  18. S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev.D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].

  19. V.A. Kovalchuk, Angular correlations and CP asymmetries in the decay Φ → Z Z → 4 fermions, Prob. Atomic Sci. Technol.2009N3 (2009) 3 [INSPIRE].

  20. K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP07 (2009) 101 [arXiv:0905.4314] [INSPIRE].

  21. P. Artoisenet et al., A framework for Higgs characterisation, JHEP11 (2013) 043 [arXiv:1306.6464] [INSPIRE].

  22. CEPC Study Group collaboration, CEPC Conceptual Design Report: Volume 2 — Physics & Detector, arXiv:1811.10545 [INSPIRE].

  23. H. Baer et al., The International Linear Collider Technical Design Report — Volume 2: Physics, arXiv:1306.6352 [INSPIRE].

  24. M.L. Mangano et al., Physics at a 100 TeV pp Collider: Standard Model Processes, CERN Yellow Rep. (2017) 1 [arXiv:1607.01831] [INSPIRE].

  25. X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

  26. X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

  27. D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

  28. V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

  29. X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP09 (2012) 021 [arXiv:1205.0160] [INSPIRE].

  30. T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

  31. S. Pi and M. Sasaki, Curvature Perturbation Spectrum in Two-field Inflation with a Turning Trajectory, JCAP10 (2012) 051 [arXiv:1205.0161] [INSPIRE].

  32. J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP11 (2013) 043 [arXiv:1306.3691] [INSPIRE].

  33. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  34. X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

  35. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett.118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

  36. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

  37. H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

  38. H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi Single Field Inflation in the non-perturbative regime, JHEP06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

  39. H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Non-Gaussian Enhancements of Galactic Halo Correlations in Quasi-Single Field Inflation, Phys. Rev.D 97 (2018) 123528 [arXiv:1711.02667] [INSPIRE].

  40. S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

  41. S. Kumar and R. Sundrum, Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities, JHEP04 (2019) 120 [arXiv:1811.11200] [INSPIRE].

  42. Y. Wang, Y.-P. Wu, J. Yokoyama and S. Zhou, Hybrid Quasi-Single Field Inflation, JCAP07 (2018) 068 [arXiv:1804.07541] [INSPIRE].

  43. S. Alexander, S.J. Gates, L. Jenks, K. Koutrolikos and E. McDonough, Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB, JHEP10 (2019) 156 [arXiv:1907.05829] [INSPIRE].

  44. S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, JHEP02 (2020) 011 [arXiv:1907.07390] [INSPIRE].

  45. A. Hook, J. Huang and D. Racco, Searches for other vacua. Part II. A new Higgstory at the cosmological collider, JHEP01 (2020) 105 [arXiv:1907.10624] [INSPIRE].

  46. A. Hook, J. Huang and D. Racco, Minimal signatures of the Standard Model in non-Gaussianities, Phys. Rev.D 101 (2020) 023519 [arXiv:1908.00019] [INSPIRE].

  47. X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino Signatures in Primordial Non-Gaussianities, JHEP09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

  48. W.Z. Chua, Q. Ding, Y. Wang and S. Zhou, Imprints of Schwinger Effect on Primordial Spectra, JHEP04 (2019) 066 [arXiv:1810.09815] [INSPIRE].

  49. R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, JCAP10 (2017) 058 [arXiv:1606.00513] [INSPIRE].

  50. X. Tong, Y. Wang and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP06 (2018) 013 [arXiv:1801.05688] [INSPIRE].

  51. N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP04 (2020) 105 [arXiv:1811.00024] [INSPIRE].

  52. O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872 [INSPIRE].

  53. J.B. Muñoz, Y. Ali-Häımoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev.D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].

  54. P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

  55. BICEP3 collaboration, BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization, Proc. SPIE Int. Soc. Opt. Eng.9153 (2014) 91531N [arXiv:1407.5928] [INSPIRE].

  56. POLARBEAR collaboration, The POLARBEAR-2 and the Simons Array Experiment, J. Low. Temp. Phys.184 (2016) 805 [arXiv:1512.07299] [INSPIRE].

  57. CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].

  58. T. Matsumura et al., Mission design of LiteBIRD, arXiv:1311.2847 [INSPIRE].

  59. H. Li et al., Probing Primordial Gravitational Waves: Ali CMB Polarization Telescope, Natl. Sci. Rev.6 (2019) 145 [arXiv:1710.03047] [INSPIRE].

  60. Planck collaboration, Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys.571 (2014) A24 [arXiv:1303.5084] [INSPIRE].

  61. Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, arXiv:1905.05697 [INSPIRE].

  62. M. Kamionkowski and T. Souradeep, The Odd-Parity CMB Bispectrum, Phys. Rev.D 83 (2011) 027301 [arXiv:1010.4304] [INSPIRE].

  63. J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP09 (2011) 045 [arXiv:1104.2846] [INSPIRE].

  64. J. Soda, H. Kodama and M. Nozawa, Parity Violation in Graviton Non-Gaussianity, JHEP08 (2011) 067 [arXiv:1106.3228] [INSPIRE].

  65. M. Shiraishi, D. Nitta and S. Yokoyama, Parity Violation of Gravitons in the CMB Bispectrum, Prog. Theor. Phys.126 (2011) 937 [arXiv:1108.0175] [INSPIRE].

  66. M. Shiraishi, Parity violation of primordial magnetic fields in the CMB bispectrum, JCAP06 (2012) 015 [arXiv:1202.2847] [INSPIRE].

  67. M. Shiraishi, A. Ricciardone and S. Saga, Parity violation in the CMB bispectrum by a rolling pseudoscalar, JCAP11 (2013) 051 [arXiv:1308.6769] [INSPIRE].

  68. M. Shiraishi, Parity violation in the CMB trispectrum from the scalar sector, Phys. Rev.D 94 (2016) 083503 [arXiv:1608.00368] [INSPIRE].

  69. N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou, Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, Phys. Rev.D 86 (2012) 103508 [arXiv:1206.6117] [INSPIRE].

  70. J.L. Cook and L. Sorbo, An inflationary model with small scalar and large tensor nonGaussianities, JCAP11 (2013) 047 [arXiv:1307.7077] [INSPIRE].

  71. N. Bartolo and G. Orlando, Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves, JCAP07 (2017) 034 [arXiv:1706.04627] [INSPIRE].

  72. N. Bartolo, G. Orlando and M. Shiraishi, Measuring chiral gravitational waves in Chern-Simons gravity with CMB bispectra, JCAP01 (2019) 050 [arXiv:1809.11170] [INSPIRE].

  73. N. Bartolo, A. Hoseinpour, S. Matarrese, G. Orlando and M. Zarei, CMB Circular and B-mode Polarization from New Interactions, Phys. Rev.D 100 (2019) 043516 [arXiv:1903.04578] [INSPIRE].

  74. A. Maleknejad, Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves, JHEP07 (2016) 104 [arXiv:1604.03327] [INSPIRE].

  75. A. Maleknejad and E. Komatsu, Production and Backreaction of Spin-2 Particles of SU(2) Gauge Field during Inflation, JHEP05 (2019) 174 [arXiv:1808.09076] [INSPIRE].

  76. S.K. Chu, M.H.G. Lee, S. Lu, X. Tong, Y. Wang and S. Zhou, Connections between Minkowski and Cosmological Correlation Functions, JCAP06 (2018) 001 [arXiv:1803.09637] [INSPIRE].

  77. D.E. Kharzeev, Topologically induced local P and CP-violation in QCD × QED, Annals Phys.325 (2010) 205 [arXiv:0911.3715] [INSPIRE].

  78. X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh Diagrammatics for Primordial Perturbations, JCAP12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

  79. V. Domcke and K. Mukaida, Gauge Field and Fermion Production during Axion Inflation, JCAP11 (2018) 020 [arXiv:1806.08769] [INSPIRE].

  80. A.G. Cohen and D.B. Kaplan, Thermodynamic Generation of the Baryon Asymmetry, Phys. Lett.B 199 (1987) 251 [INSPIRE].

  81. A.G. Cohen and D.B. Kaplan, Spontaneous Baryogenesis, Nucl. Phys.B 308 (1988) 913 [INSPIRE].

  82. M.S. Turner, A.G. Cohen and D.B. Kaplan, Isocurvature Baryon Number Fluctuations in an Inflationary Universe, Phys. Lett.B 216 (1989) 20 [INSPIRE].

  83. A. Maleknejad, Gravitational leptogenesis in axion inflation with SU(2) gauge field, JCAP12 (2016) 027 [arXiv:1604.06520] [INSPIRE].

  84. A. Maleknejad, Dark Fermions and Spontaneous C P violation in SU(2)-axion Inflation, arXiv:1909.11545 [INSPIRE].

  85. D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time Structure of the Bunch-Davies de Sitter Wavefunction, JCAP11 (2015) 048 [arXiv:1406.5490] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yi Wang.

Additional information

ArXiv ePrint: 1909.01819

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Tong, X., Wang, Y. et al. Probing P and CP violations on the cosmological collider. J. High Energ. Phys. 2020, 189 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Cosmology of Theories beyond the SM
  • Global Symmetries