Spinning black holes in shift-symmetric Horndeski theory

Abstract

We construct spinning black holes (BHs) in shift-symmetric Horndeski theory. This is an Einstein-scalar-Gauss-Bonnet model wherein the (real) scalar field couples linearly to the Gauss-Bonnet curvature squared combination. The BH solutions constructed are stationary, axially symmetric and asymptotically flat. They possess a non-trivial scalar field outside their regular event horizon; thus they have scalar hair. The scalar “charge” is not, however, an independent macroscopic degree of freedom. It is proportional to the Hawking temperature, as in the static limit, wherein the BHs reduce to the spherical solutions found by Sotirou and Zhou. The spinning BHs herein are found by solving non-perturbatively the field equations, numerically. We present an overview of the parameter space of the solutions together with a study of their basic geometric and phenomenological properties. These solutions are compared with the spinning BHs in the Einstein-dilaton-Gauss-Bonnet model and the Kerr BH of vacuum General Relativity. As for the former, and in contrast with the latter, there is a minimal BH size and small violations of the Kerr bound. Phenomenological differences with respect to either the former or the latter, however, are small for illustrative observables, being of the order of a few percent, at most.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C. Brans and R.H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev.124 (1961) 925 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    S.W. Hawking, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys.25 (1972) 167 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    T.P. Sotiriou and V. Faraoni, Black holes in scalar-tensor gravity, Phys. Rev. Lett.108 (2012) 081103 [arXiv:1109.6324] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys.D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    B. Zwiebach, Curvature squared terms and string theories, Phys. Lett.B 156 (1985) 315 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    D. Astefanesei, C. Herdeiro, A. Pombo and E. Radu, Einstein-Maxwell-scalar black holes: classes of solutions, dyons and extremality, JHEP10 (2019) 078 [arXiv:1905.08304] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  7. [7]

    P. Kanti, N.E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, Dilatonic black holes in higher curvature string gravity, Phys. Rev.D 54 (1996) 5049 [hep-th/9511071] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. [8]

    B. Kleihaus, J. Kunz, S. Mojica and E. Radu, Spinning black holes in Einstein-Gauss-Bonnet-dilaton theory: nonperturbative solutions, Phys. Rev.D 93 (2016) 044047 [arXiv:1511.05513] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    B. Kleihaus, J. Kunz and E. Radu, Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. Lett.106 (2011) 151104 [arXiv:1101.2868] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    P. Kanti, N.E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, Dilatonic black holes in higher curvature string gravity. 2: linear stability, Phys. Rev.D 57 (1998) 6255 [hep-th/9703192] [INSPIRE].

  11. [11]

    P.V.P. Cunha, C.A.R. Herdeiro, B. Kleihaus, J. Kunz and E. Radu, Shadows of Einstein-dilaton-Gauss-Bonnet black holes, Phys. Lett.B 768 (2017) 373 [arXiv:1701.00079] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  12. [12]

    H. Zhang, M. Zhou, C. Bambi, B. Kleihaus, J. Kunz and E. Radu, Testing Einstein-dilaton-Gauss-Bonnet gravity with the reflection spectrum of accreting black holes, Phys. Rev.D 95 (2017) 104043 [arXiv:1704.04426] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    J.L. Blázquez-Salcedo, F.S. Khoo and J. Kunz, Quasinormal modes of Einstein-Gauss-Bonnet-dilaton black holes, Phys. Rev.D 96 (2017) 064008 [arXiv:1706.03262] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett.120 (2018) 131103 [arXiv:1711.01187] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett.120 (2018) 131104 [arXiv:1711.02080] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett.120 (2018) 131102 [arXiv:1711.03390] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity, Phys. Rev. Lett.123 (2019) 011101 [arXiv:1904.09997] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    L.G. Collodel, B. Kleihaus, J. Kunz and E. Berti, Spinning and excited black holes in Einstein-scalar-Gauss-Bonnet theory, Class. Quant. Grav.37 (2020) 075018 [arXiv:1912.05382] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J.L. Blázquez-Salcedo, D.D. Doneva, J. Kunz and S.S. Yazadjiev, Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes, Phys. Rev.D 98 (2018) 084011 [arXiv:1805.05755] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity: an explicit example, Phys. Rev.D 90 (2014) 124063 [arXiv:1408.1698] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett.112 (2014) 251102 [arXiv:1312.3622] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys.10 (1974) 363 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  23. [23]

    T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: inflation with the most general second-order field equations, Prog. Theor. Phys.126 (2011) 511 [arXiv:1105.5723] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  24. [24]

    L. Hui and A. Nicolis, No-hair theorem for the Galileon, Phys. Rev. Lett.110 (2013) 241104 [arXiv:1202.1296] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. Lehébel, Compact astrophysical objects in modified gravity, Ph.D. thesis, Orsay, France (2018) [arXiv:1810.04434] [INSPIRE].

  26. [26]

    R. Benkel, T.P. Sotiriou and H. Witek, Black hole hair formation in shift-symmetric generalised scalar-tensor gravity, Class. Quant. Grav.34 (2017) 064001 [arXiv:1610.09168] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. [27]

    A. Yale and T. Padmanabhan, Structure of Lanczos-Lovelock Lagrangians in critical dimensions, Gen. Rel. Grav.43 (2011) 1549 [arXiv:1008.5154] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    K. Prabhu and L.C. Stein, Black hole scalar charge from a topological horizon integral in Einstein-dilaton-Gauss-Bonnet gravity, Phys. Rev.D 98 (2018) 021503 [arXiv:1805.02668] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. [29]

    C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev.136 (1964) B571 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett.112 (2014) 221101 [arXiv:1403.2757] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav.32 (2015) 144001 [arXiv:1501.04319] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    P.K. Townsend, Black holes: lecture notes, gr-qc/9707012 [INSPIRE].

  33. [33]

    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].

  34. [34]

    K. Van Aelst, E. Gourgoulhon, P. Grandclément and C. Charmousis, Hairy rotating black holes in cubic Galileon theory, Class. Quant. Grav.37 (2020) 035007 [arXiv:1910.08451] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    W. Schönauer and R. Weiß, Efficient vectorizable PDE solvers, J. Comput. Appl. Math.27 (1989) 279.

    MATH  Article  Google Scholar 

  36. [36]

    M. Schauder, R. Weiß and W. Schönauer, The CADSOL program package, Interner Bericht Nr. 46/92, Universität Karlsruhe, Karlsruhe, Germany (1992).

  37. [37]

    C. Herdeiro and E. Radu, Ergosurfaces for Kerr black holes with scalar hair, Phys. Rev.D 89 (2014) 124018 [arXiv:1406.1225] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    J. Kunz, I. Perapechka and Ya. Shnir, Kerr black holes with parity-odd scalar hair, Phys. Rev.D 100 (2019) 064032 [arXiv:1904.07630] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. [39]

    J.F.M. Delgado, C.A.R. Herdeiro and E. Radu, Horizon geometry for Kerr black holes with synchronized hair, Phys. Rev.D 97 (2018) 124012 [arXiv:1804.04910] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. [40]

    J.F.M. Delgado, C.A.R. Herdeiro and E. Radu, Kerr black holes with synchronised scalar hair and higher azimuthal harmonic index, Phys. Lett.B 792 (2019) 436 [arXiv:1903.01488] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    C.A.R. Herdeiro and E. Radu, How fast can a black hole rotate?, Int. J. Mod. Phys.D 24 (2015) 1544022 [arXiv:1505.04189] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    L. Smarr, Surface geometry of charged rotating black holes, Phys. Rev.D 7 (1973) 289 [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    V. Cardoso, A.S. Miranda, E. Berti, H. Witek and V.T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev.D 79 (2009) 064016 [arXiv:0812.1806] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. [44]

    P.V.P. Cunha and C.A.R. Herdeiro, Shadows and strong gravitational lensing: a brief review, Gen. Rel. Grav.50 (2018) 42 [arXiv:1801.00860] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. [45]

    T. Torii, H. Yajima and K.-I. Maeda, Dilatonic black holes with Gauss-Bonnet term, Phys. Rev.D 55 (1997) 739 [gr-qc/9606034] [INSPIRE].

  46. [46]

    S.O. Alexeev and M.V. Pomazanov, Black hole solutions with dilatonic hair in higher curvature gravity, Phys. Rev.D 55 (1997) 2110 [hep-th/9605106] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    Z.-K. Guo, N. Ohta and T. Torii, Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions. I. Asymptotically flat black holes, Prog. Theor. Phys.120 (2008) 581 [arXiv:0806.2481] [INSPIRE].

  48. [48]

    J.H. Horne and G.T. Horowitz, Rotating dilaton black holes, Phys. Rev.D 46 (1992) 1340 [hep-th/9203083] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    K. Shiraishi, Spinning a charged dilaton black hole, Phys. Lett.A 166 (1992) 298 [arXiv:1511.08543] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  50. [50]

    B.A. Campbell, M.J. Duncan, N. Kaloper and K.A. Olive, Axion hair for Kerr black holes, Phys. Lett.B 251 (1990) 34 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    B. Chen and L.C. Stein, Deformation of extremal black holes from stringy interactions, Phys. Rev.D 97 (2018) 084012 [arXiv:1802.02159] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. [52]

    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS2× S2 , Phys. Rev.D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. [53]

    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP10 (2006) 058 [hep-th/0606244] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    C.A.R. Herdeiro, C. Rebelo and C.M. Warnick, On the backreaction of frame dragging, Phys. Rev.D 80 (2009) 084037 [arXiv:0907.5104] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge F.M. Delgado.

Additional information

ArXiv ePrint: 2002.05012

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delgado, J.F., Herdeiro, C.A. & Radu, E. Spinning black holes in shift-symmetric Horndeski theory. J. High Energ. Phys. 2020, 180 (2020). https://doi.org/10.1007/JHEP04(2020)180

Download citation

Keywords

  • Black Holes
  • Classical Theories of Gravity