T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g − 2, Phys. Rev. Lett.109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].
T. Aoyama, T. Kinoshita and M. Nio, Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment, Phys. Rev.D 97 (2018) 036001 [arXiv:1712.06060] [INSPIRE].
M. Knecht, S. Peris, M. Perrottet and E. De Rafael, Electroweak hadronic contributions to the muon (g − 2), JHEP11 (2002) 003 [hep-ph/0205102] [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev.D 67 (2003) 073006 [Erratum ibid.D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μafter the Higgs boson mass measurement, Phys. Rev.D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].
T. Ishikawa, N. Nakazawa and Y. Yasui, Numerical calculation of the full two-loop electroweak corrections to muon (g − 2), Phys. Rev.D 99 (2019) 073004 [arXiv:1810.13445] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons,
\( \alpha \left({M}_Z^2\right) \)and the hyperfine splitting of muonium, Phys. Rev.D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to
\( \alpha \left({M}_Z^2\right) \), Eur. Phys. J.C 80 (2020) 241 [arXiv:1908.00921] [INSPIRE].
J. Prades, E. de Rafael and A. Vainshtein, The Hadronic Light-by-Light Scattering Contribution to the Muon and Electron Anomalous Magnetic Moments, Adv. Ser. Direct. High Energy Phys.20 (2009) 303 [arXiv:0901.0306] [INSPIRE].
T. Blum et al., The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].
S. Volkov, Calculating the five-loop QED contribution to the electron anomalous magnetic moment: Graphs without lepton loops, Phys. Rev.D 100 (2019) 096004 [arXiv:1909.08015] [INSPIRE].
Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett.89 (2002) 101804 [Erratum ibid.89 (2002) 129903] [hep-ex/0208001] [INSPIRE].
Muon g-2 collaboration, Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett.92 (2004) 161802 [hep-ex/0401008] [INSPIRE].
Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor, The 2018 CODATA Recommended Values of the Fundamental Physical Constants, http://physics.nist.gov/constants (Web Version 8.0, 2019).
Muon g-2 collaboration, Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].
Muon g-2 collaboration, The Muon g − 2 Experiment at Fermilab, EPJ Web Conf.212 (2019) 05003 [arXiv:1905.00497] [INSPIRE].
J-PARC g-2 collaboration, Measurement of muon g − 2 and EDM with an ultra-cold muon beam at J-PARC, Nucl. Phys. Proc. Suppl.218 (2011) 242 [INSPIRE].
M. Abe et al., A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment, PTEP2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs LHC in Supersymmetric Models, JHEP01 (2014) 123 [arXiv:1303.4256] [INSPIRE].
ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at
\( \sqrt{s} \) = 7 TeV, Phys. Lett.B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].
ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in
\( \sqrt{s} \) = 7 TeV pp collisions with the ATLAS detector, Phys. Lett.B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].
ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb−1of pp collisions at
\( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-154 (2012).
M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing Bino contribution to muon g − 2, JHEP11 (2013) 013 [arXiv:1309.3065] [INSPIRE].
ATLAS collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in
\( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 101 (2020) 052005 [arXiv:1911.12606] [INSPIRE].
B. Zhu, R. Ding and T. Li, Higgs mass and muon anomalous magnetic moment in the MSSM with gauge-gravity hybrid mediation, Phys. Rev.D 96 (2017) 035029 [arXiv:1610.09840] [INSPIRE].
A. Choudhury, L. Darmé, L. Roszkowski, E.M. Sessolo and S. Trojanowski, Muon g − 2 and related phenomenology in constrained vector-like extensions of the MSSM, JHEP05 (2017) 072 [arXiv:1701.08778] [INSPIRE].
T.T. Yanagida and N. Yokozaki, Muon g − 2 in MSSM gauge mediation revisited, Phys. Lett.B 772 (2017) 409 [arXiv:1704.00711] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and K. Yanagi, Probing minimal SUSY scenarios in the light of muon g − 2 and dark matter, JHEP06 (2017) 031 [arXiv:1704.05287] [INSPIRE].
K. Hagiwara, K. Ma and S. Mukhopadhyay, Closing in on the chargino contribution to the muon g − 2 in the MSSM: current LHC constraints, Phys. Rev.D 97 (2018) 055035 [arXiv:1706.09313] [INSPIRE].
M. Chakraborti, A. Datta, N. Ganguly and S. Poddar, Multilepton signals of heavier electroweakinos at the LHC, JHEP11 (2017) 117 [arXiv:1707.04410] [INSPIRE].
A. Choudhury, S. Rao and L. Roszkowski, Impact of LHC data on muon g − 2 solutions in a vectorlike extension of the constrained MSSM, Phys. Rev.D 96 (2017) 075046 [arXiv:1708.05675] [INSPIRE].
M.A. Ajaib, SU(5) with nonuniversal gaugino masses, Int. J. Mod. Phys.A 33 (2018) 1850032 [arXiv:1711.02560] [INSPIRE].
A.S. Belyaev, S.F. King and P.B. Schaefers, Muon g − 2 and dark matter suggest nonuniversal gaugino masses: SU(5) × A4case study at the LHC, Phys. Rev.D 97 (2018) 115002 [arXiv:1801.00514] [INSPIRE].
G. Bhattacharyya, T.T. Yanagida and N. Yokozaki, An extended gauge mediation for muon (g − 2) explanation, Phys. Lett.B 784 (2018) 118 [arXiv:1805.01607] [INSPIRE].
S. Abel, D.G. Cerdeño and S. Robles, The Power of Genetic Algorithms: what remains of the pMSSM?, arXiv:1805.03615 [INSPIRE].
J. Cao, Y. He, L. Shang, Y. Zhang and P. Zhu, Current status of a natural NMSSM in light of LHC 13 TeV data and XENON-1T results, Phys. Rev.D 99 (2019) 075020 [arXiv:1810.09143] [INSPIRE].
B. Dutta and Y. Mimura, Electron g − 2 with flavor violation in MSSM, Phys. Lett.B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].
P. Cox, C. Han, T.T. Yanagida and N. Yokozaki, Gaugino mediation scenarios for muon g − 2 and dark matter, JHEP08 (2019) 097 [arXiv:1811.12699] [INSPIRE].
H.M. Tran and H.T. Nguyen, GUT-inspired MSSM in light of muon g − 2 and LHC results at
\( \sqrt{s} \) = 13 TeV, Phys. Rev.D 99 (2019) 035040 [arXiv:1812.11757] [INSPIRE].
M. Ibe, M. Suzuki, T.T. Yanagida and N. Yokozaki, Muon g − 2 in Split-Family SUSY in light of LHC Run II, Eur. Phys. J.C 79 (2019) 688 [arXiv:1903.12433] [INSPIRE].
M. Badziak and K. Sakurai, Explanation of electron and muon g − 2 anomalies in the MSSM, JHEP10 (2019) 024 [arXiv:1908.03607] [INSPIRE].
M. Abdughani, K.-I. Hikasa, L. Wu, J.M. Yang and J. Zhao, Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond, JHEP11 (2019) 095 [arXiv:1909.07792] [INSPIRE].
T.T. Yanagida, W. Yin and N. Yokozaki, Muon g − 2 in Higgs-anomaly mediation, arXiv:2001.02672 [INSPIRE].
T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev.D 53 (1996) 6565 [Erratum ibid.D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
P. Athron et al., GM2Calc: Precise MSSM prediction for (g − 2) of the muon, Eur. Phys. J.C 76 (2016) 62 [arXiv:1510.08071] [INSPIRE].
ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1of pp collisions at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
CMS collaboration, Search for additional neutral MSSM Higgs bosons in the τ τ final state in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, JHEP09 (2018) 007 [arXiv:1803.06553] [INSPIRE].
M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun.168 (2005) 46 [hep-ph/0311167] [INSPIRE].
A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon.B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
H.G. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Non-decoupling two-loop corrections to (g − 2)μ from fermion/sfermion loops in the MSSM, Phys. Lett.B 726 (2013) 717 [arXiv:1309.0980] [INSPIRE].
H. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: detailed results, JHEP02 (2014) 070 [arXiv:1311.1775] [INSPIRE].
ATLAS collaboration, Search for direct stau production in events with two hadronic τ -leptons in
\( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 101 (2020) 032009 [arXiv:1911.06660] [INSPIRE].
ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in
\( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Eur. Phys. J.C 80 (2020) 123 [arXiv:1908.08215] [INSPIRE].
ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.89413.v1/t47.
LHC SUSY Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections.
W. Beenakker, M. Klasen, M. Kr¨amer, T. Plehn, M. Spira and P.M. Zerwas, The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett.83 (1999) 3780 [Erratum ibid.100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
G. Bozzi, B. Fuks and M. Klasen, Threshold Resummation for Slepton-Pair Production at Hadron Colliders, Nucl. Phys.B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].
B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J.C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].
B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Revisiting slepton pair production at the Large Hadron Collider, JHEP01 (2014) 168 [arXiv:1310.2621] [INSPIRE].
J. Fiaschi and M. Klasen, Slepton pair production at the LHC in NLO+NLL with resummation-improved parton densities, JHEP03 (2018) 094 [arXiv:1801.10357] [INSPIRE].
ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.89413.v1/t45.
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
J. Debove, B. Fuks and M. Klasen, Threshold resummation for gaugino pair production at hadron colliders, Nucl. Phys.B 842 (2011) 51 [arXiv:1005.2909] [INSPIRE].
B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV, JHEP10 (2012) 081 [arXiv:1207.2159] [INSPIRE].
ATLAS collaboration, Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in (pp) collisions at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:1909.09226 [INSPIRE].
ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.90607.v1/t17.
CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 166 [arXiv:1709.05406] [INSPIRE].
CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 160 [arXiv:1801.03957] [INSPIRE].
J. Fiaschi and M. Klasen, Neutralino-chargino pair production at NLO+NLL with resummation-improved parton density functions for LHC Run II, Phys. Rev.D 98 (2018) 055014 [arXiv:1805.11322] [INSPIRE].
ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
ATLAS collaboration, Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 98 (2018) 092012 [arXiv:1806.02293] [INSPIRE].
ATLAS collaboration, Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in
\( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 101 (2020) 072001 [arXiv:1912.08479] [INSPIRE].
S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for Electroweakino Discovery at a 100 TeV Hadron Collider, JHEP12 (2014) 108 [arXiv:1410.6287] [INSPIRE].
ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.81996.v1/t80.
ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb−1of
\( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, Phys. Rev.D 97 (2018) 112001 [arXiv:1712.02332] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1of
\( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, ATLAS-CONF-2019-040 (2019).
ATLAS collaboration, Prospects for searches for staus, charginos and neutralinos at the high luminosity LHC with the ATLAS Detector, ATL-PHYS-PUB-2018-048 (2018).
X. Cid Vidal et al., Report from Working Group 3, CERN Yellow Rep. Monogr.7 (2019) 585 [arXiv:1812.07831] [INSPIRE].
J. Bramante et al., Relic Neutralino Surface at a 100 TeV Collider, Phys. Rev.D 91 (2015) 054015 [arXiv:1412.4789] [INSPIRE].
S. Matsumoto, S. Shirai and M. Takeuchi, Indirect Probe of Electroweakly Interacting Particles at the High-Luminosity Large Hadron Collider, JHEP06 (2018) 049 [arXiv:1711.05449] [INSPIRE].
S. Matsumoto, S. Shirai and M. Takeuchi, Indirect Probe of Electroweak-Interacting Particles with Mono-Lepton Signatures at Hadron Colliders, JHEP03 (2019) 076 [arXiv:1810.12234] [INSPIRE].
S. Chigusa, Y. Ema and T. Moroi, Probing electroweakly interacting massive particles with Drell-Yan process at 100 TeV hadron colliders, Phys. Lett.B 789 (2019) 106 [arXiv:1810.07349] [INSPIRE].
T. Abe, S. Chigusa, Y. Ema and T. Moroi, Indirect studies of electroweakly interacting particles at 100 TeV hadron colliders, Phys. Rev.D 100 (2019) 055018 [arXiv:1904.11162] [INSPIRE].
J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun.210 (2017) 103 [arXiv:1601.05437] [INSPIRE].
B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun.180 (2009) 8 [arXiv:0801.0045] [INSPIRE].
CMS collaboration, Search for supersymmetric partners of electrons and muons in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, Phys. Lett.B 790 (2019) 140 [arXiv:1806.05264] [INSPIRE].
CMS collaboration, Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 079 [arXiv:1807.07799] [INSPIRE].
CMS collaboration, Search for supersymmetry using Higgs boson to diphoton decays at
\( \sqrt{s} \) = 13 TeV, JHEP11 (2019) 109 [arXiv:1908.08500] [INSPIRE].
CMS collaboration, Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets and missing transverse momentum in pp collisions at
\( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 076 [arXiv:1709.08908] [INSPIRE].
CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, Phys. Lett.B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].
CMS collaboration, Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, JHEP08 (2019) 150 [arXiv:1905.13059] [INSPIRE].
CMS collaboration, Search for supersymmetry in events with a τ lepton pair and missing transverse momentum in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 151 [arXiv:1807.02048] [INSPIRE].
CMS collaboration, Search for supersymmetry in events with τ leptons and missing transverse momentum in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-17-002 (2017).
CMS collaboration, Search for direct pair production of supersymmetric partners to the τ lepton in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 80 (2020) 189 [arXiv:1907.13179] [INSPIRE].
CMS collaboration, Search for Supersymmetry with a Compressed Mass Spectrum in Events with a Soft τ Lepton, a Highly Energetic Jet and Large Missing Transverse Momentum in Proton-Proton Collisions at
\( \sqrt{s} \) = TeV, Phys. Rev. Lett.124 (2020) 041803 [arXiv:1910.01185] [INSPIRE].