Skip to main content

Muon g − 2 vs LHC Run 2 in supersymmetric models

A preprint version of the article is available at arXiv.

Abstract

Supersymmetric models with sub-TeV charginos and sleptons have been a candidate for the origin of the long-standing discrepancy in the muon anomalous magnetic moment (g − 2). By gathering all the available LHC Run 2 results, we investigate the latest LHC constraints on models that explain the anomaly by their chargino contribution to the muon g − 2. It is shown that the parameter regions where sleptons are lighter than charginos are strongly disfavored. In contrast, we find that the models with \( {m}_{{\tilde{\mu}}_{\mathrm{L}}}\underset{\sim }{>}{m}_{{\tilde{\chi}}_1^{\pm }} \) are still widely allowed, where the lighter chargino dominantly decays into a W-boson and a neutralino.

References

  1. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g − 2, Phys. Rev. Lett.109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].

  2. T. Aoyama, T. Kinoshita and M. Nio, Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment, Phys. Rev.D 97 (2018) 036001 [arXiv:1712.06060] [INSPIRE].

  3. M. Knecht, S. Peris, M. Perrottet and E. De Rafael, Electroweak hadronic contributions to the muon (g − 2), JHEP11 (2002) 003 [hep-ph/0205102] [INSPIRE].

  4. A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev.D 67 (2003) 073006 [Erratum ibid.D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].

  5. C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μafter the Higgs boson mass measurement, Phys. Rev.D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].

  6. T. Ishikawa, N. Nakazawa and Y. Yasui, Numerical calculation of the full two-loop electroweak corrections to muon (g − 2), Phys. Rev.D 99 (2019) 073004 [arXiv:1810.13445] [INSPIRE].

  7. A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, \( \alpha \left({M}_Z^2\right) \)and the hyperfine splitting of muonium, Phys. Rev.D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].

  8. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \( \alpha \left({M}_Z^2\right) \), Eur. Phys. J.C 80 (2020) 241 [arXiv:1908.00921] [INSPIRE].

  9. J. Prades, E. de Rafael and A. Vainshtein, The Hadronic Light-by-Light Scattering Contribution to the Muon and Electron Anomalous Magnetic Moments, Adv. Ser. Direct. High Energy Phys.20 (2009) 303 [arXiv:0901.0306] [INSPIRE].

  10. T. Blum et al., The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett.124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].

  11. S. Volkov, Calculating the five-loop QED contribution to the electron anomalous magnetic moment: Graphs without lepton loops, Phys. Rev.D 100 (2019) 096004 [arXiv:1909.08015] [INSPIRE].

  12. Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett.89 (2002) 101804 [Erratum ibid.89 (2002) 129903] [hep-ex/0208001] [INSPIRE].

  13. Muon g-2 collaboration, Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett.92 (2004) 161802 [hep-ex/0401008] [INSPIRE].

  14. Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  15. E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor, The 2018 CODATA Recommended Values of the Fundamental Physical Constants, http://physics.nist.gov/constants (Web Version 8.0, 2019).

  16. Muon g-2 collaboration, Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].

  17. Muon g-2 collaboration, The Muon g − 2 Experiment at Fermilab, EPJ Web Conf.212 (2019) 05003 [arXiv:1905.00497] [INSPIRE].

  18. J-PARC g-2 collaboration, Measurement of muon g − 2 and EDM with an ultra-cold muon beam at J-PARC, Nucl. Phys. Proc. Suppl.218 (2011) 242 [INSPIRE].

  19. M. Abe et al., A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment, PTEP2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE].

  20. M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs LHC in Supersymmetric Models, JHEP01 (2014) 123 [arXiv:1303.4256] [INSPIRE].

  21. ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett.B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].

  22. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s} \) = 7 TeV pp collisions with the ATLAS detector, Phys. Lett.B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].

  23. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb1of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-154 (2012).

  24. M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing Bino contribution to muon g − 2, JHEP11 (2013) 013 [arXiv:1309.3065] [INSPIRE].

  25. ATLAS collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 101 (2020) 052005 [arXiv:1911.12606] [INSPIRE].

  26. B. Zhu, R. Ding and T. Li, Higgs mass and muon anomalous magnetic moment in the MSSM with gauge-gravity hybrid mediation, Phys. Rev.D 96 (2017) 035029 [arXiv:1610.09840] [INSPIRE].

  27. A. Choudhury, L. Darmé, L. Roszkowski, E.M. Sessolo and S. Trojanowski, Muon g − 2 and related phenomenology in constrained vector-like extensions of the MSSM, JHEP05 (2017) 072 [arXiv:1701.08778] [INSPIRE].

  28. T.T. Yanagida and N. Yokozaki, Muon g − 2 in MSSM gauge mediation revisited, Phys. Lett.B 772 (2017) 409 [arXiv:1704.00711] [INSPIRE].

  29. M. Endo, K. Hamaguchi, S. Iwamoto and K. Yanagi, Probing minimal SUSY scenarios in the light of muon g − 2 and dark matter, JHEP06 (2017) 031 [arXiv:1704.05287] [INSPIRE].

  30. K. Hagiwara, K. Ma and S. Mukhopadhyay, Closing in on the chargino contribution to the muon g − 2 in the MSSM: current LHC constraints, Phys. Rev.D 97 (2018) 055035 [arXiv:1706.09313] [INSPIRE].

  31. M. Chakraborti, A. Datta, N. Ganguly and S. Poddar, Multilepton signals of heavier electroweakinos at the LHC, JHEP11 (2017) 117 [arXiv:1707.04410] [INSPIRE].

  32. A. Choudhury, S. Rao and L. Roszkowski, Impact of LHC data on muon g − 2 solutions in a vectorlike extension of the constrained MSSM, Phys. Rev.D 96 (2017) 075046 [arXiv:1708.05675] [INSPIRE].

  33. M.A. Ajaib, SU(5) with nonuniversal gaugino masses, Int. J. Mod. Phys.A 33 (2018) 1850032 [arXiv:1711.02560] [INSPIRE].

  34. A.S. Belyaev, S.F. King and P.B. Schaefers, Muon g − 2 and dark matter suggest nonuniversal gaugino masses: SU(5) × A4case study at the LHC, Phys. Rev.D 97 (2018) 115002 [arXiv:1801.00514] [INSPIRE].

  35. G. Bhattacharyya, T.T. Yanagida and N. Yokozaki, An extended gauge mediation for muon (g − 2) explanation, Phys. Lett.B 784 (2018) 118 [arXiv:1805.01607] [INSPIRE].

  36. S. Abel, D.G. Cerdeño and S. Robles, The Power of Genetic Algorithms: what remains of the pMSSM?, arXiv:1805.03615 [INSPIRE].

  37. J. Cao, Y. He, L. Shang, Y. Zhang and P. Zhu, Current status of a natural NMSSM in light of LHC 13 TeV data and XENON-1T results, Phys. Rev.D 99 (2019) 075020 [arXiv:1810.09143] [INSPIRE].

  38. B. Dutta and Y. Mimura, Electron g − 2 with flavor violation in MSSM, Phys. Lett.B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].

  39. P. Cox, C. Han, T.T. Yanagida and N. Yokozaki, Gaugino mediation scenarios for muon g − 2 and dark matter, JHEP08 (2019) 097 [arXiv:1811.12699] [INSPIRE].

  40. H.M. Tran and H.T. Nguyen, GUT-inspired MSSM in light of muon g − 2 and LHC results at \( \sqrt{s} \) = 13 TeV, Phys. Rev.D 99 (2019) 035040 [arXiv:1812.11757] [INSPIRE].

  41. M. Ibe, M. Suzuki, T.T. Yanagida and N. Yokozaki, Muon g − 2 in Split-Family SUSY in light of LHC Run II, Eur. Phys. J.C 79 (2019) 688 [arXiv:1903.12433] [INSPIRE].

  42. M. Badziak and K. Sakurai, Explanation of electron and muon g − 2 anomalies in the MSSM, JHEP10 (2019) 024 [arXiv:1908.03607] [INSPIRE].

  43. M. Abdughani, K.-I. Hikasa, L. Wu, J.M. Yang and J. Zhao, Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond, JHEP11 (2019) 095 [arXiv:1909.07792] [INSPIRE].

  44. T.T. Yanagida, W. Yin and N. Yokozaki, Muon g − 2 in Higgs-anomaly mediation, arXiv:2001.02672 [INSPIRE].

  45. T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev.D 53 (1996) 6565 [Erratum ibid.D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  46. P. Athron et al., GM2Calc: Precise MSSM prediction for (g − 2) of the muon, Eur. Phys. J.C 76 (2016) 62 [arXiv:1510.08071] [INSPIRE].

  47. ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb1of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP01 (2018) 055 [arXiv:1709.07242] [INSPIRE].

  48. CMS collaboration, Search for additional neutral MSSM Higgs bosons in the τ τ final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP09 (2018) 007 [arXiv:1803.06553] [INSPIRE].

  49. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun.168 (2005) 46 [hep-ph/0311167] [INSPIRE].

  50. A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon.B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

  51. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  52. H.G. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Non-decoupling two-loop corrections to (g − 2)μ from fermion/sfermion loops in the MSSM, Phys. Lett.B 726 (2013) 717 [arXiv:1309.0980] [INSPIRE].

  53. H. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: detailed results, JHEP02 (2014) 070 [arXiv:1311.1775] [INSPIRE].

  54. ATLAS collaboration, Search for direct stau production in events with two hadronic τ -leptons in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 101 (2020) 032009 [arXiv:1911.06660] [INSPIRE].

  55. ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Eur. Phys. J.C 80 (2020) 123 [arXiv:1908.08215] [INSPIRE].

  56. ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.89413.v1/t47.

  57. LHC SUSY Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections.

  58. W. Beenakker, M. Klasen, M. Kr¨amer, T. Plehn, M. Spira and P.M. Zerwas, The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett.83 (1999) 3780 [Erratum ibid.100 (2008) 029901] [hep-ph/9906298] [INSPIRE].

  59. G. Bozzi, B. Fuks and M. Klasen, Threshold Resummation for Slepton-Pair Production at Hadron Colliders, Nucl. Phys.B 777 (2007) 157 [hep-ph/0701202] [INSPIRE].

  60. B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J.C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].

  61. B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Revisiting slepton pair production at the Large Hadron Collider, JHEP01 (2014) 168 [arXiv:1310.2621] [INSPIRE].

  62. J. Fiaschi and M. Klasen, Slepton pair production at the LHC in NLO+NLL with resummation-improved parton densities, JHEP03 (2018) 094 [arXiv:1801.10357] [INSPIRE].

  63. ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.89413.v1/t45.

  64. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

  65. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  66. J. Debove, B. Fuks and M. Klasen, Threshold resummation for gaugino pair production at hadron colliders, Nucl. Phys.B 842 (2011) 51 [arXiv:1005.2909] [INSPIRE].

  67. B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV, JHEP10 (2012) 081 [arXiv:1207.2159] [INSPIRE].

  68. ATLAS collaboration, Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in (pp) collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, arXiv:1909.09226 [INSPIRE].

  69. ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.90607.v1/t17.

  70. CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 166 [arXiv:1709.05406] [INSPIRE].

  71. CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 160 [arXiv:1801.03957] [INSPIRE].

  72. J. Fiaschi and M. Klasen, Neutralino-chargino pair production at NLO+NLL with resummation-improved parton density functions for LHC Run II, Phys. Rev.D 98 (2018) 055014 [arXiv:1805.11322] [INSPIRE].

  73. ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].

  74. ATLAS collaboration, Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 98 (2018) 092012 [arXiv:1806.02293] [INSPIRE].

  75. ATLAS collaboration, Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 101 (2020) 072001 [arXiv:1912.08479] [INSPIRE].

  76. S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for Electroweakino Discovery at a 100 TeV Hadron Collider, JHEP12 (2014) 108 [arXiv:1410.6287] [INSPIRE].

  77. ATLAS collaboration, available in HEPData, https://dx.doi.org/10.17182/hepdata.81996.v1/t80.

  78. ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb1of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, Phys. Rev.D 97 (2018) 112001 [arXiv:1712.02332] [INSPIRE].

  79. ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb1of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, ATLAS-CONF-2019-040 (2019).

  80. ATLAS collaboration, Prospects for searches for staus, charginos and neutralinos at the high luminosity LHC with the ATLAS Detector, ATL-PHYS-PUB-2018-048 (2018).

  81. X. Cid Vidal et al., Report from Working Group 3, CERN Yellow Rep. Monogr.7 (2019) 585 [arXiv:1812.07831] [INSPIRE].

  82. J. Bramante et al., Relic Neutralino Surface at a 100 TeV Collider, Phys. Rev.D 91 (2015) 054015 [arXiv:1412.4789] [INSPIRE].

  83. S. Matsumoto, S. Shirai and M. Takeuchi, Indirect Probe of Electroweakly Interacting Particles at the High-Luminosity Large Hadron Collider, JHEP06 (2018) 049 [arXiv:1711.05449] [INSPIRE].

  84. S. Matsumoto, S. Shirai and M. Takeuchi, Indirect Probe of Electroweak-Interacting Particles with Mono-Lepton Signatures at Hadron Colliders, JHEP03 (2019) 076 [arXiv:1810.12234] [INSPIRE].

  85. S. Chigusa, Y. Ema and T. Moroi, Probing electroweakly interacting massive particles with Drell-Yan process at 100 TeV hadron colliders, Phys. Lett.B 789 (2019) 106 [arXiv:1810.07349] [INSPIRE].

  86. T. Abe, S. Chigusa, Y. Ema and T. Moroi, Indirect studies of electroweakly interacting particles at 100 TeV hadron colliders, Phys. Rev.D 100 (2019) 055018 [arXiv:1904.11162] [INSPIRE].

  87. J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun.210 (2017) 103 [arXiv:1601.05437] [INSPIRE].

  88. B.C. Allanach et al., SUSY Les Houches Accord 2, Comput. Phys. Commun.180 (2009) 8 [arXiv:0801.0045] [INSPIRE].

  89. CMS collaboration, Search for supersymmetric partners of electrons and muons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 790 (2019) 140 [arXiv:1806.05264] [INSPIRE].

  90. CMS collaboration, Searches for pair production of charginos and top squarks in final states with two oppositely charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 079 [arXiv:1807.07799] [INSPIRE].

  91. CMS collaboration, Search for supersymmetry using Higgs boson to diphoton decays at \( \sqrt{s} \) = 13 TeV, JHEP11 (2019) 109 [arXiv:1908.08500] [INSPIRE].

  92. CMS collaboration, Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 076 [arXiv:1709.08908] [INSPIRE].

  93. CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].

  94. CMS collaboration, Search for supersymmetry with a compressed mass spectrum in the vector boson fusion topology with 1-lepton and 0-lepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP08 (2019) 150 [arXiv:1905.13059] [INSPIRE].

  95. CMS collaboration, Search for supersymmetry in events with a τ lepton pair and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 151 [arXiv:1807.02048] [INSPIRE].

  96. CMS collaboration, Search for supersymmetry in events with τ leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-17-002 (2017).

  97. CMS collaboration, Search for direct pair production of supersymmetric partners to the τ lepton in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 80 (2020) 189 [arXiv:1907.13179] [INSPIRE].

  98. CMS collaboration, Search for Supersymmetry with a Compressed Mass Spectrum in Events with a Soft τ Lepton, a Highly Energetic Jet and Large Missing Transverse Momentum in Proton-Proton Collisions at \( \sqrt{s} \) = TeV, Phys. Rev. Lett.124 (2020) 041803 [arXiv:1910.01185] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Iwamoto.

Additional information

ArXiv ePrint: 2001.11025

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Endo, M., Hamaguchi, K., Iwamoto, S. et al. Muon g − 2 vs LHC Run 2 in supersymmetric models. J. High Energ. Phys. 2020, 165 (2020). https://doi.org/10.1007/JHEP04(2020)165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2020)165

Keywords

  • Supersymmetry Phenomenology