Skip to main content

Advertisement

SpringerLink
Dynamics for holographic codes
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 April 2020

Dynamics for holographic codes

  • Tobias J. Osborne1 &
  • Deniz E. Stiegemann  ORCID: orcid.org/0000-0003-1853-39241,2 

Journal of High Energy Physics volume 2020, Article number: 154 (2020) Cite this article

  • 487 Accesses

  • 11 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We describe how to introduce dynamics for the holographic states and codes introduced by Pastawski, Yoshida, Harlow and Preskill. This task requires the definition of a continuous limit of the kinematical Hilbert space which we argue may be achieved via the semicontinuous limit of Jones. Dynamics is then introduced by building a unitary representation of a group known as Thompson’s group T, which is closely related to the conformal group conf (ℝ1,1). The bulk Hilbert space is realised as a special subspace of the semicontinuous limit Hilbert space spanned by a class of distinguished states which can be assigned a discrete bulk geometry. The analogue of the group of large bulk diffeomorphisms is given by a unitary representation of the Ptolemy group Pt , on the bulk Hilbert space thus realising a toy model of the AdS/CFT correspondence which we call the Pt /T correspondence.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].

  4. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

  5. M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys.931 (2017) 1 [arXiv:1609.01287] [INSPIRE].

  6. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.42 (2010) 2323 [Int. J. Mod. Phys.D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].

  7. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev.D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

  8. J.M. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

  9. D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys.88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].

  10. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev.D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

  11. A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

  12. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

  13. F. Pastawski and J. Preskill, Code properties from holographic geometries, Phys. Rev.X 7 (2017) 021022 [arXiv:1612.00017] [INSPIRE].

  14. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

  15. N. Bao et al., Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence, Phys. Rev.D 91 (2015) 125036 [arXiv:1504.06632] [INSPIRE].

  16. Z. Yang, P. Hayden and X.-L. Qi, Bidirectional holographic codes and sub-AdS locality, JHEP01 (2016) 175 [arXiv:1510.03784] [INSPIRE].

  17. A. Bhattacharyya, Z.-S. Gao, L.-Y. Hung and S.-N. Liu, Exploring the Tensor Networks/AdS Correspondence, JHEP08 (2016) 086 [arXiv:1606.00621] [INSPIRE].

  18. A. May, Tensor networks for dynamic spacetimes, JHEP06 (2017) 118 [arXiv:1611.06220] [INSPIRE].

  19. D. Goyeneche, D. Alsina, J.I. Latorre, A. Riera and K. Życzkowski, Absolutely maximally entangled states, combinatorial designs and multiunitary matrices, Phys. Rev.A 92 (2015) 032316 [arXiv:1506.08857] [INSPIRE].

  20. M. Enríquez, I. Wintrowicz and K. Życzkowski, Maximally Entangled Multipartite States: A Brief Survey, J. Phys. Conf. Ser.698 (2016) 012003.

  21. Z. Raissi, C. Gogolin, A. Riera and A. Aćın, Optimal quantum error correcting codes from absolutely maximally entangled states, J. Phys.A 51 (2018) 075301 [arXiv:1701.03359] [INSPIRE].

  22. Y. Li, M. Han, M. Grassl and B. Zeng, Invariant Perfect Tensors, New J. Phys.19 (2017) 063029 [arXiv:1612.04504] [INSPIRE].

  23. A. Peach and S.F. Ross, Tensor Network Models of Multiboundary Wormholes, Class. Quant. Grav.34 (2017) 105011 [arXiv:1702.05984] [INSPIRE].

  24. W. Donnelly, B. Michel, D. Marolf and J. Wien, Living on the Edge: A Toy Model for Holographic Reconstruction of Algebras with Centers, JHEP04 (2017) 093 [arXiv:1611.05841] [INSPIRE].

  25. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP10 (2015) 175 [arXiv:1505.05515] [INSPIRE].

  26. C. Bény, Causal structure of the entanglement renormalization ansatz, New J. Phys.15 (2013) 023020 [arXiv:1110.4872] [INSPIRE].

  27. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Tensor Networks from Kinematic Space, JHEP07 (2016) 100 [arXiv:1512.01548] [INSPIRE].

  28. X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].

  29. V.F.R. Jones, Some unitary representations of Thompson’s groups F and T , J. Comb. Algebra1 (2017) 1 [arXiv:1412.7740].

  30. V.F.R. Jones, A No-Go Theorem for the Continuum Limit of a Periodic Quantum Spin Chain, Commun. Math. Phys.357 (2018) 295 [arXiv:1607.08769] [INSPIRE].

  31. J.W. Cannon, W.J. Floyd and W.R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math.42 (1996) 215.

  32. J. Belk, Thompson’s Group F, arXiv:0708.3609.

  33. S.S. Gubser, J. Knaute, S. Parikh, A. Samberg and P. Witaszczyk, p-adic AdS/CFT, Commun. Math. Phys.352 (2017) 1019 [arXiv:1605.01061] [INSPIRE].

  34. M. Heydeman, M. Marcolli, I.A. Saberi and B. Stoica, Tensor networks, p-adic fields and algebraic curves: arithmetic and the AdS3/CFT2correspondence, Adv. Theor. Math. Phys.22 (2018) 93 [arXiv:1605.07639] [INSPIRE].

  35. D. Harlow, S.H. Shenker, D. Stanford and L. Susskind, Tree-like structure of eternal inflation: A solvable model, Phys. Rev.D 85 (2012) 063516 [arXiv:1110.0496] [INSPIRE].

  36. L. Schneps and P. Lochak, Geometric Galois Actions. Volume 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge U.K. (1997).

  37. L. Funar and V. Sergiescu, Central extensions of the Ptolemy-Thompson group and quantized Teichmüller theory, J. Topol.3 (2010) 29.

  38. V.F.R. Jones, Scale invariant transfer matrices and Hamiltonians, J. Phys.A 51 (2018) 104001 [arXiv:1706.00515].

  39. V.F.R. Jones, Planar algebras, I, math.QA/9909027.

  40. D. Brill, Black holes and wormholes in (2 + 1)-dimensions, gr-qc/9904083 [INSPIRE].

  41. S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav.15 (1998) 627 [gr-qc/9707036] [INSPIRE].

  42. S. Carlip, The (2 + 1)-Dimensional black hole, Class. Quant. Grav.12 (1995) 2853 [gr-qc/9506079] [INSPIRE].

  43. S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav.22 (2005) R85 [gr-qc/0503022] [INSPIRE].

  44. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].

  45. U. Pachner, P.L. Homeomorphic Manifolds are Equivalent by Elementary Shellings, Eur. J. Combinator.12 (1991) 129.

  46. R.C. Penner, Universal Constructions in Teichmüller Theory, Adv. Math.98 (1993) 143.

  47. S. Weinberg, The quantum theory of fields. Volume I, Cambridge University Press, Cambridge U.K. (1996).

  48. M. Schottenloher, A mathematical introduction to conformal field theory, Lect. Notes Phys.759 (2008) 1 [INSPIRE].

  49. R. Bieri and R. Strebel, On Groups of PL-homeomorphisms of the Real Line, Mathematical Surveys and Monographs, volume 215, American Mathematical Society, Providence U.S.A. (2016).

  50. D.E. Stiegemann, Approximating diffeomorphisms by elements of Thompson’s group T , arXiv:1810.11041.

  51. D.E. Stiegemann, Thompson Field Theory, Ph.D. Thesis, Gottfried Wilhelm Leibniz Universität Hannover, Hannover Germany (2019) [arXiv:1907.08442] [INSPIRE].

  52. J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys.104 (1986) 207 [INSPIRE].

  53. H.-J. Matschull, Black hole creation in (2 + 1)-dimensions, Class. Quant. Grav.16 (1999) 1069 [gr-qc/9809087] [INSPIRE].

  54. T.J. Osborne and D.E. Stiegemann, Quantum fields for unitary representations of Thompson’s groups F and T , arXiv:1903.00318 [INSPIRE].

  55. G. Evenbly, Hyperinvariant Tensor Networks and Holography, Phys. Rev. Lett.119 (2017) 141602 [arXiv:1704.04229] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167, Hannover, Germany

    Tobias J. Osborne & Deniz E. Stiegemann

  2. ARC Centre for Engineered Quantum Systems, School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia

    Deniz E. Stiegemann

Authors
  1. Tobias J. Osborne
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Deniz E. Stiegemann
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Deniz E. Stiegemann.

Additional information

ArXiv ePrint: 1706.08823

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osborne, T.J., Stiegemann, D.E. Dynamics for holographic codes. J. High Energ. Phys. 2020, 154 (2020). https://doi.org/10.1007/JHEP04(2020)154

Download citation

  • Received: 03 January 2020

  • Revised: 17 March 2020

  • Accepted: 27 March 2020

  • Published: 23 April 2020

  • DOI: https://doi.org/10.1007/JHEP04(2020)154

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Discrete Symmetries
  • Conformal and W Symmetry
  • Conformal Field Theory
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.