Skip to main content

Rényi divergences from Euclidean quenches

A preprint version of the article is available at arXiv.


We study the generalisation of relative entropy, the Rényi divergence Dα(ρρβ) in 2d CFTs between an excited state density matrix ρ, created by deforming the Hamiltonian, and the thermal density matrix ρβ. Using the path integral representation of this quantity as a Euclidean quench, we obtain the leading contribution to the Rényi divergence for deformations by scalar primaries and by conserved holomorphic currents in conformal perturbation theory. Furthermore, we calculate the leading contribution to the Rényi divergence when the conserved current perturbations have inhomogeneous spatial profiles which are versions of the sine-square deformation (SSD). The dependence on the Rényi parameter (α) of the leading contribution have a universal form for these inhomogeneous deformations and it is identical to that seen in the Rényi divergence of the simple harmonic oscillator perturbed by a linear potential. Our study of these Rényi divergences shows that the family of second laws of thermodynamics, which are equivalent to the monotonicity of Rényi divergences, do indeed provide stronger constraints for allowed transitions compared to the traditional second law.


  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Proof of a quantum bousso bound, Phys. Rev.D 90 (2014) 044002 [arXiv:1404.5635] [INSPIRE].

    ADS  Google Scholar 

  4. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys.90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].

    ADS  Article  Google Scholar 

  6. D. Petz, Quasi-entropies for finite quantum systems, Rept. Math. Phys.s23 (1986) 57.

  7. A. Bernamonti, F. Galli, R.C. Myers and J. Oppenheim, Holographic second laws of black hole thermodynamics, JHEP07 (2018) 111 [arXiv:1803.03633] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. Y. Zhou, Information theoretic inequalities as bounds in superconformal field theory, arXiv:1607.05401 [INSPIRE].

  9. S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP06 (2014) 096 [arXiv:1402.0007] [INSPIRE].

    ADS  Article  Google Scholar 

  10. S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev.D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].

    ADS  Google Scholar 

  11. S. Datta, J.R. David and S.P. Kumar, Conformal perturbation theory and higher spin entanglement entropy on the torus, JHEP04 (2015) 041 [arXiv:1412.3946] [INSPIRE].

    ADS  Article  Google Scholar 

  12. S. Vajna, K. Klobas, T. Prosen and A. Polkovnikov, Replica resummation of the Baker-Campbell-Hausdorff series, Phys. Rev. Lett.120 (2018) 200607 [arXiv:1707.08987].

    ADS  Article  Google Scholar 

  13. N. Ishibashi and T. Tada, Infinite circumference limit of conformal field theory, J. Phys.A 48 (2015) 315402 [arXiv:1504.00138] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. X. Wen and J.-Q. Wu, Floquet conformal field theory, arXiv:1805.00031 [INSPIRE].

  15. X. Wen and J.-Q. Wu, Quantum dynamics in sine-square deformed conformal field theory: Quench from uniform to nonuniform conformal field theory, Phys. Rev.B 97 (2018) 184309 [arXiv:1802.07765] [INSPIRE].

    ADS  Article  Google Scholar 

  16. R. Fan, Y. Gu, A. Vishwanath and X. Wen, Emergent spatial structure and entanglement localization in Floquet conformal field theory, arXiv:1908.05289 [INSPIRE].

  17. B. Lapierre et al., Emergent black hole dynamics in critical Floquet systems, arXiv:1909.08618 [INSPIRE].

  18. T. Van Erven and P. Harremos, Ŕenyi divergence and Kullback-Leibler divergence, IEEE Trans. Inf. Theor. 60 (2014) 3797.

    Article  Google Scholar 

  19. D. Berenstein and A. Miller, Conformal perturbation theory, dimensional regularization and AdS/CFT correspondence, Phys. Rev.D 90 (2014) 086011 [arXiv:1406.4142] [INSPIRE].

    ADS  Google Scholar 

  20. J. Long, Higher spin entanglement entropy, JHEP12 (2014) 055 [arXiv:1408.1298] [INSPIRE].

    ADS  Article  Google Scholar 

  21. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. M. Beccaria and G. Macorini, On the partition functions of higher spin black holes, JHEP12 (2013) 027 [arXiv:1310.4410] [INSPIRE].

    ADS  Article  Google Scholar 

  23. M. Gutperle and P. Kraus, Higher spin black holes, JHEP05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP04 (2012) 103 [arXiv:1203.0015] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. R. Feynman and A. Hibbs, Path integrals and quantum mechanics, McGraw Hill, New York U.S.A. (1965).

  26. I. MacCormack, A. Liu, M. Nozaki and S. Ryu, Holographic duals of inhomogeneous systems: the rainbow chain and the sine-square deformation model, J. Phys.A 52 (2019) 505401 [arXiv:1812.10023] [INSPIRE].

    MathSciNet  Google Scholar 

  27. A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Thermal correlation functions of KdV charges in 2D CFT, JHEP02 (2019) 044 [arXiv:1810.11053] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. F. Brandao et al., The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci.112 (2015) 3275.

    ADS  Article  Google Scholar 

  30. A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

  31. F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys.B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. J. Cardy, The \( T\overline{T} \)deformation of quantum field theory as random geometry, JHEP10 (2018) 186 [arXiv:1801.06895] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. O. Aharony et al., Modular invariance and uniqueness of \( T\overline{T} \)deformed CFT, JHEP01 (2019) 086 [arXiv:1808.02492] [INSPIRE].

    ADS  Article  Google Scholar 

  34. S. Datta and Y. Jiang, \( T\overline{T} \)deformed partition functions, JHEP08 (2018) 106 [arXiv:1806.07426] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations


Corresponding author

Correspondence to Justin R. David.

Additional information

ArXiv ePrint: 1912.07210

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, B.G., Datta, S. & David, J.R. Rényi divergences from Euclidean quenches. J. High Energ. Phys. 2020, 94 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Conformal Field Theory
  • Field Theories in Lower Dimensions
  • Higher Spin Symmetry