S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP08 (2013) 060 [arXiv:1305.3182] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Bousso, H. Casini, Z. Fisher and J. Maldacena, Proof of a quantum bousso bound, Phys. Rev.D 90 (2014) 044002 [arXiv:1404.5635] [INSPIRE].
ADS
Google Scholar
D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys.90 (2018) 045003 [arXiv:1803.04993] [INSPIRE].
ADS
Article
Google Scholar
D. Petz, Quasi-entropies for finite quantum systems, Rept. Math. Phys.s23 (1986) 57.
A. Bernamonti, F. Galli, R.C. Myers and J. Oppenheim, Holographic second laws of black hole thermodynamics, JHEP07 (2018) 111 [arXiv:1803.03633] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Zhou, Information theoretic inequalities as bounds in superconformal field theory, arXiv:1607.05401 [INSPIRE].
S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP06 (2014) 096 [arXiv:1402.0007] [INSPIRE].
ADS
Article
Google Scholar
S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev.D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].
ADS
Google Scholar
S. Datta, J.R. David and S.P. Kumar, Conformal perturbation theory and higher spin entanglement entropy on the torus, JHEP04 (2015) 041 [arXiv:1412.3946] [INSPIRE].
ADS
Article
Google Scholar
S. Vajna, K. Klobas, T. Prosen and A. Polkovnikov, Replica resummation of the Baker-Campbell-Hausdorff series, Phys. Rev. Lett.120 (2018) 200607 [arXiv:1707.08987].
ADS
Article
Google Scholar
N. Ishibashi and T. Tada, Infinite circumference limit of conformal field theory, J. Phys.A 48 (2015) 315402 [arXiv:1504.00138] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
X. Wen and J.-Q. Wu, Floquet conformal field theory, arXiv:1805.00031 [INSPIRE].
X. Wen and J.-Q. Wu, Quantum dynamics in sine-square deformed conformal field theory: Quench from uniform to nonuniform conformal field theory, Phys. Rev.B 97 (2018) 184309 [arXiv:1802.07765] [INSPIRE].
ADS
Article
Google Scholar
R. Fan, Y. Gu, A. Vishwanath and X. Wen, Emergent spatial structure and entanglement localization in Floquet conformal field theory, arXiv:1908.05289 [INSPIRE].
B. Lapierre et al., Emergent black hole dynamics in critical Floquet systems, arXiv:1909.08618 [INSPIRE].
T. Van Erven and P. Harremos, Ŕenyi divergence and Kullback-Leibler divergence, IEEE Trans. Inf. Theor. 60 (2014) 3797.
Article
Google Scholar
D. Berenstein and A. Miller, Conformal perturbation theory, dimensional regularization and AdS/CFT correspondence, Phys. Rev.D 90 (2014) 086011 [arXiv:1406.4142] [INSPIRE].
ADS
Google Scholar
J. Long, Higher spin entanglement entropy, JHEP12 (2014) 055 [arXiv:1408.1298] [INSPIRE].
ADS
Article
Google Scholar
P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP11 (2011) 061 [arXiv:1108.2567] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Beccaria and G. Macorini, On the partition functions of higher spin black holes, JHEP12 (2013) 027 [arXiv:1310.4410] [INSPIRE].
ADS
Article
Google Scholar
M. Gutperle and P. Kraus, Higher spin black holes, JHEP05 (2011) 022 [arXiv:1103.4304] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP04 (2012) 103 [arXiv:1203.0015] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Feynman and A. Hibbs, Path integrals and quantum mechanics, McGraw Hill, New York U.S.A. (1965).
I. MacCormack, A. Liu, M. Nozaki and S. Ryu, Holographic duals of inhomogeneous systems: the rainbow chain and the sine-square deformation model, J. Phys.A 52 (2019) 505401 [arXiv:1812.10023] [INSPIRE].
MathSciNet
Google Scholar
A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Thermal correlation functions of KdV charges in 2D CFT, JHEP02 (2019) 044 [arXiv:1810.11053] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP05 (2011) 031 [arXiv:1101.2910] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Brandao et al., The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci.112 (2015) 3275.
ADS
Article
Google Scholar
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys.B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Cardy, The
\( T\overline{T} \)deformation of quantum field theory as random geometry, JHEP10 (2018) 186 [arXiv:1801.06895] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O. Aharony et al., Modular invariance and uniqueness of
\( T\overline{T} \)deformed CFT, JHEP01 (2019) 086 [arXiv:1808.02492] [INSPIRE].
ADS
Article
Google Scholar
S. Datta and Y. Jiang, \( T\overline{T} \)deformed partition functions, JHEP08 (2018) 106 [arXiv:1806.07426] [INSPIRE].