Skip to main content

Two-particle azimuthal correlations as a probe of collective behaviour in deep inelastic ep scattering at HERA

A preprint version of the article is available at arXiv.

Abstract

Two-particle azimuthal correlations have been measured in neutral current deep inelastic ep scattering with virtuality Q2> 5 GeV2 at a centre-of-mass energy \( \sqrt{s} \) = 318 GeV recorded with the ZEUS detector at HERA. The correlations of charged particles have been measured in the range of laboratory pseudorapidity 1.5 < η < 2.0 and transverse momentum 0.1 < pT< 5.0 GeV and event multiplicities Nch up to six times larger than the average 〈Nch〉 ≈ 5. The two-particle correlations have been measured in terms of the angular observables cn{2} = 〈〈cosnΔφ〉〉, where n is between 1 and 4 and ∆φ is the relative azimuthal angle between the two particles. Comparisons with available models of deep inelastic scattering, which are tuned to reproduce inclusive particle production, suggest that the measured two-particle correlations are dominated by contributions from multijet production. The correlations observed here do not indicate the kind of collective behaviour recently observed at the highest RHIC and LHC energies in high-multiplicity hadronic collisions.

References

  1. [1]

    NA49 collaboration, Energy dependence of pion and kaon production in central Pb + Pb collisions, Phys. Rev.C 66 (2002) 054902 [nucl-ex/0205002] [INSPIRE].

  2. [2]

    BRAHMS collaboration, Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys.A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].

  3. [3]

    B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys.A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].

  4. [4]

    STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys.A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

  5. [5]

    PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys.A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

  6. [6]

    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett.105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

  7. [7]

    E.V. Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions, Phys. Lett.78B (1978) 150 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev.D 27 (1983) 140 [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci.63 (2013) 123 [arXiv:1301.2826] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    ALICE collaboration, Centrality dependence of π, K, p production in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev.C 88 (2013) 044910 [arXiv:1303.0737] [INSPIRE].

  11. [11]

    CMS collaboration, Observation of long-range near-side angular correlations in proton-proton collisions at the LHC, JHEP09 (2010) 091 [arXiv:1009.4122] [INSPIRE].

  12. [12]

    ALICE collaboration, Long-range angular correlations on the near and away side in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett.B 719 (2013) 29 [arXiv:1212.2001] [INSPIRE].

  13. [13]

    ATLAS collaboration, Observation of associated near-side and away-side long-range correlations in \( \sqrt{s_{NN}} \) = 5.02 TeV proton-lead collisions with the ATLAS detector, Phys. Rev. Lett.110 (2013) 182302 [arXiv:1212.5198] [INSPIRE].

  14. [14]

    ATLAS collaboration, Observation of long-range elliptic azimuthal anisotropies in \( \sqrt{s} \) = 13 and 2.76 TeV pp collisions with the ATLAS detector, Phys. Rev. Lett.116 (2016) 172301 [arXiv:1509.04776] [INSPIRE].

  15. [15]

    PHENIX collaboration, Quadrupole anisotropy in dihadron azimuthal correlations in central d + Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett.111 (2013) 212301 [arXiv:1303.1794] [INSPIRE].

  16. [16]

    PHENIX collaboration, Measurements of elliptic and triangular flow in high-multiplicity3He + Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett.115 (2015) 142301 [arXiv:1507.06273] [INSPIRE].

  17. [17]

    R.D. Weller and P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central p + p, p + Pb and Pb + Pb collisions at \( \sqrt{s} \) = 5.02 TeV, Phys. Lett.B 774 (2017) 351 [arXiv:1701.07145] [INSPIRE].

  18. [18]

    P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies, Phys. Rev.C 85 (2012) 014911 [arXiv:1112.0915] [INSPIRE].

  19. [19]

    P. Bozek and W. Broniowski, Correlations from hydrodynamic flow in p-Pb collisions, Phys. Lett.B 718 (2013) 1557 [arXiv:1211.0845] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    P. Bozek and W. Broniowski, Collective dynamics in high-energy proton-nucleus collisions, Phys. Rev.C 88 (2013) 014903 [arXiv:1304.3044] [INSPIRE].

  21. [21]

    A. Dumitru et al., The Ridge in proton-proton collisions at the LHC, Phys. Lett.B 697 (2011) 21 [arXiv:1009.5295] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    V.N. Gribov, Glauber corrections and the interaction between high-energy hadrons and nuclei, Sov. Phys. JETP29 (1969) 483 [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    D. Kharzeev, Z. Tu, A. Zhang and W. Li, Effect of the fluctuating proton size on the study of the chiral magnetic effect in proton-nucleus collisions, Phys. Rev.C 97 (2018) 024905 [arXiv:1712.02486] [INSPIRE].

  24. [24]

    A. Cooper-Sarkar and R. Devenish, Deep inelastic scattering, Oxford University Press, Oxford U.K. (2003).

    Google Scholar 

  25. [25]

    A. Badea et al., Measurements of two-particle correlations in e+ecollisions at 91 GeV with ALEPH archived data, Phys. Rev. Lett.123 (2019) 212002 [arXiv:1906.00489] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    D. Beavis et al., Measurement of collective flow in heavy ion collisions using particle pair correlations, Phys. Rev.C 44 (1991) 1091.

    ADS  Google Scholar 

  27. [27]

    S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys.C 70 (1996) 665 [hep-ph/9407282].

  28. [28]

    N. Borghini et al., Flow analysis from multiparticle azimuthal correlations, Phys. Rev.C 64 (2001) 054901 [nucl-th/0105040].

  29. [29]

    A. Bilandzic et al., Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev.C 89 (2014) 064904 [arXiv:1312.3572].

  30. [30]

    S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Börnstein23 (2010) 293 [arXiv:0809.2949].

  31. [31]

    ZEUS collaboration, The ZEUS detector, PUBDB-2017-12635 (1993), http://www-zeus.desy.de/bluebook/bluebook.html.

  32. [32]

    N. Harnew et al., Vertex triggering using time difference measurements in the ZEUS central tracking detector, Nucl. Instrum. Meth.A 279 (1989) 290 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    B. Foster et al., The performance of the ZEUS central tracking detector z-by-timing electronics in a transpute based data acquisition system, Nucl. Phys. Proc. Suppl.B 32 (1993) 181.

    ADS  Article  Google Scholar 

  34. [34]

    B. Foster et al., The design and construction of the ZEUS central tracking detector, Nucl. Instrum. Meth.A 338 (1994) 254 [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    A. Polini et al., The design and performance of the ZEUS Micro Vertex detector, Nucl. Instrum. Meth.A 581 (2007) 656 [arXiv:0708.3011] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    M. Derrick et al., Design and construction of the ZEUS barrel calorimeter., Nucl. Instrum. Meth.A 309 (1991) 77 [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    ZEUS Calorimeter Group, Construction and beam test of the ZEUS forward and rear calorimeter, Nucl. Instrum. Meth.A 309 (1991) 101 [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    A. Caldwell et al., Design and implementation of a high precision readout system for the ZEUS calorimeter, Nucl. Instrum. Meth.A 321 (1992) 356 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    ZEUS Barrel Calorimeter Group, Beam tests of the ZEUS barrel calorimeter, Nucl. Instrum. Meth.A 336 (1993) 23 [INSPIRE].

  40. [40]

    J. Andruszków et al., First measurement of HERA luminosity by ZEUS lumi monitor, DESY-92-066 (1992).

  41. [41]

    ZEUS collaboration, Measurement of total and partial photon proton cross-sections at 180 GeV center-of-mass energy, Z. Phys.C 63 (1994) 391 [INSPIRE].

  42. [42]

    ZEUS Luminosity Group, Luminosity measurement in the ZEUS experiment, Acta Phys. Polon.B 32 (2001) 2025 [INSPIRE].

  43. [43]

    M. Helbichi et al., The spectrometer system for measuring ZEUS luminosity at HERA, Nucl. Instrum. Meth.A 565 (2006) 572 [physics/0512153] [INSPIRE].

  44. [44]

    ZEUS collaboration, Measurement of the luminosity in the ZEUS experiment at HERA II, Nucl. Instrum. Meth.A 744 (2014) 80 [arXiv:1306.1391] [INSPIRE].

  45. [45]

    W.H. Smith, K. Tokushuku and L.W. Wiggers, The ZEUS trigger system, in the proceedings of Computing in High-Energy Physics (CHEP 1992), September 21–25, Annecy, France (1992) [DESY-92-150B].

  46. [46]

    P.D. Allfrey et al., The design and performance of the ZEUS global tracking trigger, Nucl. Instrum. Meth.A 580 (2007) 1257 [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    H. Abramowicz, A. Caldwell and R. Sinkus, Neural network based electron identification in the ZEUS calorimeter, Nucl. Instrum. Meth.A 365 (1995) 508 [hep-ex/9505004] [INSPIRE].

  48. [48]

    R. Sinkus and T. Voss, Particle identification with neural networks using a rotational invariant moment representation, Nucl. Instrum. Meth.A 391 (1997) 360 [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    S. Bentvelsen, J. Engelen and P. Kooijman, Reconstruction of (x, Q2) and extraction of structure functions in neutral current scattering at HERA, in the proceedings of the Workshop on physics at HERA, October 29–30, Hamburg, Germany (1991).

  50. [50]

    ZEUS collaboration, Measurement of the diffractive structure function F2(D4) at HERA, Eur. Phys. J.C 1 (1998) 81 [hep-ex/9709021] [INSPIRE].

  51. [51]

    ZEUS collaboration, Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data, Eur. Phys. J.C 6 (1999) 43 [hep-ex/9807010] [INSPIRE].

  52. [52]

    G. Ingelman, A. Edin and J. Rathsman, LEPTO 6.5: a Monte Carlo generator for deep inelastic lepton - nucleon scattering, Comput. Phys. Commun.101 (1997) 108 [hep-ph/9605286] [INSPIRE].

  53. [53]

    L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE].

  54. [54]

    T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun.82 (1994) 74 [INSPIRE].

  55. [55]

    V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [INSPIRE].

    Google Scholar 

  56. [56]

    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+eannihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46 (1977) 641 [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    G. Gustafson, Dual description of a confined color field, Phys. Lett.B 175 (1986) 453 [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    A.H. Mueller, On the multiplicity of hadrons in QCD jets, Phys. Lett.104B (1981) 161 [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    B.I. Ermolaev and V.S. Fadin, Log-Log asymptotic form of exclusive cross-sections in quantum chromodynamics, JETP Lett.33 (1981) 269 [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    ZEUS collaboration, Observation of events with a large rapidity gap in deep inelastic scattering at HERA, Phys. Lett.B 315 (1993) 481 [INSPIRE].

  62. [62]

    K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q2and its implications on diffraction, Phys. Rev.D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].

  63. [63]

    H. Jung, Hard diffractive scattering in high-energy e p collisions and the Monte Carlo generator RAPGAP, Comput. Phys. Commun.86 (1995) 147 [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    R. Brun et al., Geant3, ERN-DD/EE/84-1 (1987).

  65. [65]

    O. Bachynska, Measurement of Dmeson production in deep-inelastic scattering at HERA, DESY-THESIS-2012-045 (2012).

  66. [66]

    V. Libov, Measurement of charm and beauty production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors, DESY-THESIS-2013-030 (2013).

  67. [67]

    ALICE collaboration, The ALICE definition of primary particles, ALICE-PUBLIC-2017-005 (2017).

  68. [68]

    ALICE collaboration, Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett.B 708 (2012) 249 [arXiv:1109.2501] [INSPIRE].

  69. [69]

    STAR collaboration, Azimuthal anisotropy and correlations at large transverse momenta in p+p and Au + Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett.93 (2004) 252301 [nucl-ex/0407007] [INSPIRE].

  70. [70]

    ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett.B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].

  71. [71]

    ALICE collaboration, Pseudorapidity density of charged particles in p + Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett.110 (2013) 032301 [arXiv:1210.3615] [INSPIRE].

  72. [72]

    CMS collaboration, Pseudorapidity distribution of charged hadrons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 751 (2015) 143 [arXiv:1507.05915] [INSPIRE].

  73. [73]

    ALICE collaboration, Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett.B 753 (2016) 319 [arXiv:1509.08734] [INSPIRE].

  74. [74]

    S. Catani et al., Longitudinally invariant Ktclustering algorithms for hadron hadron collisions, Nucl. Phys.B 406 (1993) 187.

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Wing.

Additional information

ArXiv ePrint: 1912.07431

Supported by the Italian National Institute for Nuclear Physics (INFN) (INFN Bologna, Bologna, Italy, Calabria University, Physics Department and INFN, Cosenza, Italy, INFN Padova, Padova, Italy, Dipartimento di Fisica e Astronomia dell’ Università and INFN, Padova, Italy, Università di Torino and INFN, Torino, Italy, Università del Piemonte Orientale, Novara, and INFN, Torino, Italy)

Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05 H09PDF (Physikalisches Institut der Universität Bonn, Bonn, Germany)

Supported by HIR grant UM.C/625/1/HIR/149 and UMRG grants RU006-2013, RP012A-13AFR and RP012B-13AFR from Universiti Malaya, and ERGS grant ER004-2012A from the Ministry of Education, Malaysia (National Centre for Particle Physics, Universiti Malaya, 50603 Kuala Lumpur, Malaysia)

Supported by the Polish National Science Centre (NCN) grant no. DEC-2014/13/B/ST2/02486 (Department of Physics, Jagellonian University, Krakow, Poland)

Supported by the Science and Technology Facilities Council, U.K. (School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom, Department of Physics, University of Oxford, Oxford, United Kingdom, Physics and Astronomy Department, University College London, London, United Kingdom)

Supported by the German Federal Ministry for Education and Research (BMBF), under contract No. 05h09GUF, and the SFB 676 of the Deutsche Forschungsgemeinschaft (DFG) (Hamburg University, Institute of Experimental Physics, Hamburg, Germany)

Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research (Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan, Department of Physics, Kobe University, Kobe, Japan, Department of Physics, Tokyo Institute of Technology, Tokyo, Japan)

Supported by the Israel Science Foundation (Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel)

Supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science (Department of Physics, Temple University, Philadelphia, PA 19122, U.S.A.)

Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Department of Physics, York University, Ontario, Canada M3J 1P3)

This work is part of and supported by the DFG Collaborative Research Centre “SFB 1225 (ISOQUANT)” (GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany, Physikalisches Institute, University of Heidelberg, Heidelberg, Germany, Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany)

Supported by DESY (M. Wing)

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

The ZEUS collaboration., Abt, I., Adamczyk, L. et al. Two-particle azimuthal correlations as a probe of collective behaviour in deep inelastic ep scattering at HERA. J. High Energ. Phys. 2020, 70 (2020). https://doi.org/10.1007/JHEP04(2020)070

Download citation

Keywords

  • Collective flow
  • Lepton-Nucleon Scattering (experiments)
  • Particle correlations and fluctuations
  • Quark gluon plasma