NA49 collaboration, Energy dependence of pion and kaon production in central Pb + Pb collisions, Phys. Rev.C 66 (2002) 054902 [nucl-ex/0205002] [INSPIRE].
BRAHMS collaboration, Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys.A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].
B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys.A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].
STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys.A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys.A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].
ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett.105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].
E.V. Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions, Phys. Lett.78B (1978) 150 [INSPIRE].
ADS
Article
Google Scholar
J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev.D 27 (1983) 140 [INSPIRE].
ADS
Google Scholar
U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci.63 (2013) 123 [arXiv:1301.2826] [INSPIRE].
ADS
Article
Google Scholar
ALICE collaboration, Centrality dependence of π, K, p production in Pb-Pb collisions at
\( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev.C 88 (2013) 044910 [arXiv:1303.0737] [INSPIRE].
CMS collaboration, Observation of long-range near-side angular correlations in proton-proton collisions at the LHC, JHEP09 (2010) 091 [arXiv:1009.4122] [INSPIRE].
ALICE collaboration, Long-range angular correlations on the near and away side in p-Pb collisions at
\( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett.B 719 (2013) 29 [arXiv:1212.2001] [INSPIRE].
ATLAS collaboration, Observation of associated near-side and away-side long-range correlations in
\( \sqrt{s_{NN}} \) = 5.02 TeV proton-lead collisions with the ATLAS detector, Phys. Rev. Lett.110 (2013) 182302 [arXiv:1212.5198] [INSPIRE].
ATLAS collaboration, Observation of long-range elliptic azimuthal anisotropies in
\( \sqrt{s} \) = 13 and 2.76 TeV pp collisions with the ATLAS detector, Phys. Rev. Lett.116 (2016) 172301 [arXiv:1509.04776] [INSPIRE].
PHENIX collaboration, Quadrupole anisotropy in dihadron azimuthal correlations in central d + Au collisions at
\( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett.111 (2013) 212301 [arXiv:1303.1794] [INSPIRE].
PHENIX collaboration, Measurements of elliptic and triangular flow in high-multiplicity3He + Au collisions at
\( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett.115 (2015) 142301 [arXiv:1507.06273] [INSPIRE].
R.D. Weller and P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central p + p, p + Pb and Pb + Pb collisions at
\( \sqrt{s} \) = 5.02 TeV, Phys. Lett.B 774 (2017) 351 [arXiv:1701.07145] [INSPIRE].
P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies, Phys. Rev.C 85 (2012) 014911 [arXiv:1112.0915] [INSPIRE].
P. Bozek and W. Broniowski, Correlations from hydrodynamic flow in p-Pb collisions, Phys. Lett.B 718 (2013) 1557 [arXiv:1211.0845] [INSPIRE].
ADS
Article
Google Scholar
P. Bozek and W. Broniowski, Collective dynamics in high-energy proton-nucleus collisions, Phys. Rev.C 88 (2013) 014903 [arXiv:1304.3044] [INSPIRE].
A. Dumitru et al., The Ridge in proton-proton collisions at the LHC, Phys. Lett.B 697 (2011) 21 [arXiv:1009.5295] [INSPIRE].
ADS
Article
Google Scholar
V.N. Gribov, Glauber corrections and the interaction between high-energy hadrons and nuclei, Sov. Phys. JETP29 (1969) 483 [INSPIRE].
ADS
Google Scholar
D. Kharzeev, Z. Tu, A. Zhang and W. Li, Effect of the fluctuating proton size on the study of the chiral magnetic effect in proton-nucleus collisions, Phys. Rev.C 97 (2018) 024905 [arXiv:1712.02486] [INSPIRE].
A. Cooper-Sarkar and R. Devenish, Deep inelastic scattering, Oxford University Press, Oxford U.K. (2003).
Google Scholar
A. Badea et al., Measurements of two-particle correlations in e+e−collisions at 91 GeV with ALEPH archived data, Phys. Rev. Lett.123 (2019) 212002 [arXiv:1906.00489] [INSPIRE].
ADS
Article
Google Scholar
D. Beavis et al., Measurement of collective flow in heavy ion collisions using particle pair correlations, Phys. Rev.C 44 (1991) 1091.
ADS
Google Scholar
S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys.C 70 (1996) 665 [hep-ph/9407282].
N. Borghini et al., Flow analysis from multiparticle azimuthal correlations, Phys. Rev.C 64 (2001) 054901 [nucl-th/0105040].
A. Bilandzic et al., Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev.C 89 (2014) 064904 [arXiv:1312.3572].
S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Börnstein23 (2010) 293 [arXiv:0809.2949].
ZEUS collaboration, The ZEUS detector, PUBDB-2017-12635 (1993), http://www-zeus.desy.de/bluebook/bluebook.html.
N. Harnew et al., Vertex triggering using time difference measurements in the ZEUS central tracking detector, Nucl. Instrum. Meth.A 279 (1989) 290 [INSPIRE].
ADS
Article
Google Scholar
B. Foster et al., The performance of the ZEUS central tracking detector z-by-timing electronics in a transpute based data acquisition system, Nucl. Phys. Proc. Suppl.B 32 (1993) 181.
ADS
Article
Google Scholar
B. Foster et al., The design and construction of the ZEUS central tracking detector, Nucl. Instrum. Meth.A 338 (1994) 254 [INSPIRE].
ADS
Article
Google Scholar
A. Polini et al., The design and performance of the ZEUS Micro Vertex detector, Nucl. Instrum. Meth.A 581 (2007) 656 [arXiv:0708.3011] [INSPIRE].
ADS
Article
Google Scholar
M. Derrick et al., Design and construction of the ZEUS barrel calorimeter., Nucl. Instrum. Meth.A 309 (1991) 77 [INSPIRE].
ADS
Article
Google Scholar
ZEUS Calorimeter Group, Construction and beam test of the ZEUS forward and rear calorimeter, Nucl. Instrum. Meth.A 309 (1991) 101 [INSPIRE].
ADS
Google Scholar
A. Caldwell et al., Design and implementation of a high precision readout system for the ZEUS calorimeter, Nucl. Instrum. Meth.A 321 (1992) 356 [INSPIRE].
ADS
Article
Google Scholar
ZEUS Barrel Calorimeter Group, Beam tests of the ZEUS barrel calorimeter, Nucl. Instrum. Meth.A 336 (1993) 23 [INSPIRE].
J. Andruszków et al., First measurement of HERA luminosity by ZEUS lumi monitor, DESY-92-066 (1992).
ZEUS collaboration, Measurement of total and partial photon proton cross-sections at 180 GeV center-of-mass energy, Z. Phys.C 63 (1994) 391 [INSPIRE].
ZEUS Luminosity Group, Luminosity measurement in the ZEUS experiment, Acta Phys. Polon.B 32 (2001) 2025 [INSPIRE].
M. Helbichi et al., The spectrometer system for measuring ZEUS luminosity at HERA, Nucl. Instrum. Meth.A 565 (2006) 572 [physics/0512153] [INSPIRE].
ZEUS collaboration, Measurement of the luminosity in the ZEUS experiment at HERA II, Nucl. Instrum. Meth.A 744 (2014) 80 [arXiv:1306.1391] [INSPIRE].
W.H. Smith, K. Tokushuku and L.W. Wiggers, The ZEUS trigger system, in the proceedings of Computing in High-Energy Physics (CHEP 1992), September 21–25, Annecy, France (1992) [DESY-92-150B].
P.D. Allfrey et al., The design and performance of the ZEUS global tracking trigger, Nucl. Instrum. Meth.A 580 (2007) 1257 [INSPIRE].
ADS
Article
Google Scholar
H. Abramowicz, A. Caldwell and R. Sinkus, Neural network based electron identification in the ZEUS calorimeter, Nucl. Instrum. Meth.A 365 (1995) 508 [hep-ex/9505004] [INSPIRE].
R. Sinkus and T. Voss, Particle identification with neural networks using a rotational invariant moment representation, Nucl. Instrum. Meth.A 391 (1997) 360 [INSPIRE].
ADS
Article
Google Scholar
S. Bentvelsen, J. Engelen and P. Kooijman, Reconstruction of (x, Q2) and extraction of structure functions in neutral current scattering at HERA, in the proceedings of the Workshop on physics at HERA, October 29–30, Hamburg, Germany (1991).
ZEUS collaboration, Measurement of the diffractive structure function F2(D4) at HERA, Eur. Phys. J.C 1 (1998) 81 [hep-ex/9709021] [INSPIRE].
ZEUS collaboration, Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data, Eur. Phys. J.C 6 (1999) 43 [hep-ex/9807010] [INSPIRE].
G. Ingelman, A. Edin and J. Rathsman, LEPTO 6.5: a Monte Carlo generator for deep inelastic lepton - nucleon scattering, Comput. Phys. Commun.101 (1997) 108 [hep-ph/9605286] [INSPIRE].
L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun.71 (1992) 15 [INSPIRE].
T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun.82 (1994) 74 [INSPIRE].
V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [INSPIRE].
Google Scholar
Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e−annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP46 (1977) 641 [INSPIRE].
ADS
Google Scholar
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].
ADS
Article
Google Scholar
G. Gustafson, Dual description of a confined color field, Phys. Lett.B 175 (1986) 453 [INSPIRE].
ADS
Article
Google Scholar
A.H. Mueller, On the multiplicity of hadrons in QCD jets, Phys. Lett.104B (1981) 161 [INSPIRE].
ADS
Article
Google Scholar
B.I. Ermolaev and V.S. Fadin, Log-Log asymptotic form of exclusive cross-sections in quantum chromodynamics, JETP Lett.33 (1981) 269 [INSPIRE].
ADS
Google Scholar
ZEUS collaboration, Observation of events with a large rapidity gap in deep inelastic scattering at HERA, Phys. Lett.B 315 (1993) 481 [INSPIRE].
K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q2and its implications on diffraction, Phys. Rev.D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].
H. Jung, Hard diffractive scattering in high-energy e p collisions and the Monte Carlo generator RAPGAP, Comput. Phys. Commun.86 (1995) 147 [INSPIRE].
ADS
Article
Google Scholar
R. Brun et al., Geant3, ERN-DD/EE/84-1 (1987).
O. Bachynska, Measurement of D*±meson production in deep-inelastic scattering at HERA, DESY-THESIS-2012-045 (2012).
V. Libov, Measurement of charm and beauty production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors, DESY-THESIS-2013-030 (2013).
ALICE collaboration, The ALICE definition of primary particles, ALICE-PUBLIC-2017-005 (2017).
ALICE collaboration, Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at
\( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett.B 708 (2012) 249 [arXiv:1109.2501] [INSPIRE].
STAR collaboration, Azimuthal anisotropy and correlations at large transverse momenta in p+p and Au + Au collisions at
\( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett.93 (2004) 252301 [nucl-ex/0407007] [INSPIRE].
ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at
\( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett.B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].
ALICE collaboration, Pseudorapidity density of charged particles in p + Pb collisions at
\( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett.110 (2013) 032301 [arXiv:1210.3615] [INSPIRE].
CMS collaboration, Pseudorapidity distribution of charged hadrons in proton-proton collisions at
\( \sqrt{s} \) = 13 TeV, Phys. Lett.B 751 (2015) 143 [arXiv:1507.05915] [INSPIRE].
ALICE collaboration, Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at
\( \sqrt{s} \) = 13 TeV, Phys. Lett.B 753 (2016) 319 [arXiv:1509.08734] [INSPIRE].
S. Catani et al., Longitudinally invariant Ktclustering algorithms for hadron hadron collisions, Nucl. Phys.B 406 (1993) 187.
ADS
Article
Google Scholar