Skip to main content

Advertisement

SpringerLink
Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment
Download PDF
Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 09 April 2020

Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment

  • The CONNIE collaboration,
  • Alexis Aguilar-Arevalo1,
  • Xavier Bertou2,
  • Carla Bonifazi3,
  • Gustavo Cancelo4,
  • Brenda Aurea Cervantes-Vergara1,
  • Claudio Chavez5,
  • Juan C. D’Olivo1,
  • João C. dos Anjos6,
  • Juan Estrada4,
  • Aldo R. Fernandes Neto7,
  • Guillermo Fernandez-Moroni4,8,
  • Ana Foguel3,
  • Richard Ford4,
  • Federico Izraelevitch9,
  • Ben Kilminster10,
  • H. P. Lima Jr6,
  • Martin Makler6,
  • Jorge Molina5,
  • Philipe Mota6,
  • Irina Nasteva3,
  • Eduardo Paolini8,
  • Carlos Romero5,
  • Youssef Sarkis1,
  • Miguel Sofo Haro2,
  • Javier Tiffenberg4 &
  • …
  • Christian Torres5 

Journal of High Energy Physics volume 2020, Article number: 54 (2020) Cite this article

  • 363 Accesses

  • 30 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The CONNIE experiment is located at a distance of 30 m from the core of a commercial nuclear reactor, and has collected a 3.7 kg-day exposure using a CCD detector array sensitive to an ∼1 keV threshold for the study of coherent neutrino-nucleus elastic scattering. Here we demonstrate the potential of this low-energy neutrino experiment as a probe for physics Beyond the Standard Model, by using the recently published results to constrain two simplified extensions of the Standard Model with light mediators. We compare the new limits with those obtained for the same models using neutrinos from the Spallation Neutron Source. Our new constraints represent the best limits for these simplified models among the experiments searching for CEνNS for a light vector mediator with mass \( {M}_{Z^{\prime }} \)< 10 MeV, and for a light scalar mediator with mass Mϕ< 30 MeV. These results constitute the first use of the CONNIE data as a probe for physics Beyond the Standard Model.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current, Phys. Rev.D 9 (1974) 1389 [INSPIRE].

    ADS  Google Scholar 

  2. COHERENT collaboration, Observation of coherent elastic neutrino-nucleus scattering, Science357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].

  3. R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP07 (2012) 026 [arXiv:1202.6073] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring new physics in coherent elastic neutrino-nucleus scattering, JCAP11 (2018) 016 [arXiv:1805.01798] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett.B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev.D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].

  7. A.N. Khan and W. Rodejohann, New physics from COHERENT data with an improved quenching factor, Phys. Rev.D 100 (2019) 113003 [arXiv:1907.12444] [INSPIRE].

    ADS  Google Scholar 

  8. T.S. Kosmas, D.K. Papoulias, M. Tortola and J.W.F. Valle, Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, Phys. Rev.D 96 (2017) 063013 [arXiv:1703.00054] [INSPIRE].

  9. C. Blanco, D. Hooper and P. Machado, Constraining sterile neutrino interpretations of the LSND and MiniBooNE anomalies with coherent neutrino scattering experiments, arXiv:1901.08094 [INSPIRE].

  10. D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev.D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].

  11. P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP07 (2018) 037 [arXiv:1804.03660] [INSPIRE].

    Article  ADS  Google Scholar 

  12. B. Dutta, S. Liao, S. Sinha and L.E. Strigari, Searching for beyond the Standard Model physics with COHERENT energy and timing data, Phys. Rev. Lett.123 (2019) 061801 [arXiv:1903.10666] [INSPIRE].

  13. O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP07 (2019) 103 [arXiv:1905.03750] [INSPIRE].

  14. D.K. Papoulias, T.S. Kosmas and Y. Kuno, Recent probes of standard and non-standard neutrino physics with nuclei, Front. in Phys.7 (2019) 191 [arXiv:1911.00916] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D.Y. Akimov et al., RED-100 detector for the first observation of the elastic coherent neutrino scattering off xenon nuclei, J. Phys. Conf. Ser.675 (2016) 012016 [INSPIRE].

  16. MINER collaboration, Background studies for the MINER coherent neutrino scattering reactor experiment, Nucl. Instrum. Meth.A 853 (2017) 53 [arXiv:1609.02066] [INSPIRE].

  17. J. Billard et al., Coherent neutrino scattering with low temperature bolometers at CHOOZ reactor complex, J. Phys.G 44 (2017) 105101 [arXiv:1612.09035] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Hakenmüller et al., Neutron-induced background in the CONUS experiment, Eur. Phys. J.C 79 (2019) 699 [arXiv:1903.09269] [INSPIRE].

  19. CONNIE collaboration, The CONNIE experiment, J. Phys. Conf. Ser.761 (2016) 012057 [arXiv:1608.01565] [INSPIRE].

  20. S. Holland, D. Groom, N. Palaio, R. Stover and M. Wei, Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon, IEEE Trans. Electron Devices50 (2003) 225.

    Article  ADS  Google Scholar 

  21. G. Fernandez Moroni, J. Estrada, E.E. Paolini, G. Cancelo, J. Tiffenberg and J. Molina, Charge coupled devices for detection of coherent neutrino-nucleus scattering, Phys. Rev.D 91 (2015) 072001 [arXiv:1405.5761] [INSPIRE].

  22. CONNIE collaboration, Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE), 2016 JINST11 P07024 [arXiv:1604.01343] [INSPIRE].

  23. CONNIE collaboration, Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment, Phys. Rev.D 100 (2019) 092005 [arXiv:1906.02200] [INSPIRE].

  24. D.G. Cerdeño, M. Fairbairn, T. Jubb, P.A.N. Machado, A.C. Vincent and C. Bœhm, Physics from solar neutrinos in dark matter direct detection experiments, JHEP05 (2016) 118 [Erratum ibid.09 (2016) 048] [arXiv:1604.01025] [INSPIRE].

  25. R. Essig et al., Working group report: new light weakly coupled particles, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July–6 August 2013 [arXiv:1311.0029] [INSPIRE].

  26. S.R. Klein and J. Nystrand, Interference in exclusive vector meson production in heavy ion collisions, Phys. Rev. Lett.84 (2000) 2330 [hep-ph/9909237] [INSPIRE].

  27. Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  28. Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP05 (2018) 066 [arXiv:1802.05171] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev.D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].

  30. J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett.B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].

  31. DAMIC collaboration, Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB, Phys. Rev.D 94 (2016) 082006 [arXiv:1607.07410] [INSPIRE].

  32. R.D. Ryan, Precision measurements of the ionization energy and its temperature variation in high purity silicon radiation detectors, IEEE Trans. Nucl. Sci.20 (1973) 473.

    Article  ADS  Google Scholar 

  33. A.E. Chavarria et al., Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector, Phys. Rev.D 94 (2016) 082007 [arXiv:1608.00957] [INSPIRE].

  34. J. Lindhard, M. Scharff and H. Schioett, Range concepts and heavy ion ranges (notes on atomic collisions, II), Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd.33 (1963) 14.

    Google Scholar 

  35. F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept.477 (2009) 1 [arXiv:0902.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  36. N.V. Krasnikov, Light scalars, (gμ− 2) muon anomaly and dark matter in a model with a Higgs democracy, arXiv:1707.00508 [INSPIRE].

  37. J.B. Dent, B. Dutta, S. Liao, J.L. Newstead, L.E. Strigari and J.W. Walker, Probing light mediators at ultralow threshold energies with coherent elastic neutrino-nucleus scattering, Phys. Rev.D 96 (2017) 095007 [arXiv:1612.06350] [INSPIRE].

  38. M. Abdullah, J.B. Dent, B. Dutta, G.L. Kane, S. Liao and L.E. Strigari, Coherent elastic neutrino nucleus scattering as a probe of a Z′ through kinetic and mass mixing effects, Phys. Rev.D 98 (2018) 015005 [arXiv:1803.01224] [INSPIRE].

  39. P. Vogel and J. Engel, Neutrino electromagnetic form-factors, Phys. Rev.D 39 (1989) 3378 [INSPIRE].

    ADS  Google Scholar 

  40. TEXONO collaboration, A search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station, Phys. Rev.D 75 (2007) 012001 [hep-ex/0605006] [INSPIRE].

  41. F. Izraelevitch et al., A measurement of the ionization efficiency of nuclear recoils in silicon, 2017 JINST12 P06014 [arXiv:1702.00873] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Ḿexico, Circuito Exterior S/N, Ciudad Universitaria, CDMX, Mexico

    Alexis Aguilar-Arevalo, Brenda Aurea Cervantes-Vergara, Juan C. D’Olivo & Youssef Sarkis

  2. Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Enerǵıa Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCUYO), Av. Exequiel Bustillo, 9500, San Carlos de Bariloche, Argentina

    Xavier Bertou & Miguel Sofo Haro

  3. Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

    Carla Bonifazi, Ana Foguel & Irina Nasteva

  4. Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL, U.S.A.

    Gustavo Cancelo, Juan Estrada, Guillermo Fernandez-Moroni, Richard Ford & Javier Tiffenberg

  5. Laboratorio de Mecánica y Energía, Facultad de Ingeniería, Universidad Nacional de Asunción, Campus de la UNA, San Lorenzo, Paraguay

    Claudio Chavez, Jorge Molina, Carlos Romero & Christian Torres

  6. Centro Brasileiro de Pesquisas Físicas, Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, Brazil

    João C. dos Anjos, H. P. Lima Jr, Martin Makler & Philipe Mota

  7. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Campus Angra dos Reis, Rua do Areal 522, Pq. Mambucaba, Angra dos Reis, RJ, Brazil

    Aldo R. Fernandes Neto

  8. Instituto de Investigaciones en Ingeniería Eléctrica, Departamento de Ingeniería Eléctrica y Computadoras, Universidad Nacional del Sur (UNS) — CONICET, San Andres 800, Bahía Blanca, Argentina

    Guillermo Fernandez-Moroni & Eduardo Paolini

  9. Universidad Nacional de San Martín (UNSAM), Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Martín de Irigoyen, 3100, San Martín, Argentina

    Federico Izraelevitch

  10. Physik Institut, Universität Zürich, Winterthurerstrasse 190, Zurich, Switzerland

    Ben Kilminster

Authors
  1. Alexis Aguilar-Arevalo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xavier Bertou
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Carla Bonifazi
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Gustavo Cancelo
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Brenda Aurea Cervantes-Vergara
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Claudio Chavez
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Juan C. D’Olivo
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. João C. dos Anjos
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Juan Estrada
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Aldo R. Fernandes Neto
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Guillermo Fernandez-Moroni
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. Ana Foguel
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. Richard Ford
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. Federico Izraelevitch
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. Ben Kilminster
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. H. P. Lima Jr
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. Martin Makler
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. Jorge Molina
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. Philipe Mota
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. Irina Nasteva
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. Eduardo Paolini
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. Carlos Romero
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. Youssef Sarkis
    View author publications

    You can also search for this author in PubMed Google Scholar

  24. Miguel Sofo Haro
    View author publications

    You can also search for this author in PubMed Google Scholar

  25. Javier Tiffenberg
    View author publications

    You can also search for this author in PubMed Google Scholar

  26. Christian Torres
    View author publications

    You can also search for this author in PubMed Google Scholar

Consortia

The CONNIE collaboration

Corresponding author

Correspondence to Brenda Aurea Cervantes-Vergara.

Additional information

ArXiv ePrint: 1910.04951

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

The CONNIE collaboration., Aguilar-Arevalo, A., Bertou, X. et al. Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment. J. High Energ. Phys. 2020, 54 (2020). https://doi.org/10.1007/JHEP04(2020)054

Download citation

  • Received: 14 October 2019

  • Revised: 09 January 2020

  • Accepted: 17 March 2020

  • Published: 09 April 2020

  • DOI: https://doi.org/10.1007/JHEP04(2020)054

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Neutrino Detectors and Telescopes (experiments)
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.