Electroweak loops as a probe of new physics in \( t\overline{t} \) production at the LHC

Abstract

We calculate the 𝒪(α) weak corrections to top quark pair production at the LHC and include anomalous electroweak interactions from dimension-six operators. The loop calculation and renormalization are consistently done within the Standard Model Effective Field Theory. Sensitivity to the involved operators is exposed through the virtual corrections, which receive enhancement from electroweak Sudakov logarithms. We investigate the prospects of using this feature for probing New Physics at the LHC that so far has only been studied in final states with on-shell sensitivity such as \( t\overline{t} \) + Z or t → bW. We find that the large \( t\overline{t} \) production rate and the excellent perturbative control allow compensating the loop suppression and yield remarkably strong constraints that are competitive with those from \( t\overline{t} \) + Z.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through \( O\left({\alpha}_S^4\right), \)Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC, Phys. Lett.B 736 (2014) 58 [arXiv:1404.7116] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett.116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].

  4. [4]

    M. Czakon, P. Fiedler, D. Heymes and A. Mitov, NNLO QCD predictions for fully-differential top-quark pair production at the Tevatron, JHEP05 (2016) 034 [arXiv:1601.05375] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A. Czarnecki and K. Melnikov, Two loop QCD corrections to top quark width, Nucl. Phys.B 544 (1999) 520 [hep-ph/9806244] [INSPIRE].

  6. [6]

    K.G. Chetyrkin, R. Harlander, T. Seidensticker and M. Steinhauser, Second order QCD corrections to Γ(t → W b), Phys. Rev.D 60 (1999) 114015 [hep-ph/9906273] [INSPIRE].

  7. [7]

    J. Gao, C.S. Li and H.X. Zhu, Top quark decay at next-to-next-to leading order in QCD, Phys. Rev. Lett.110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].

  8. [8]

    M. Brucherseifer, F. Caola and K. Melnikov, \( \mathcal{O}\left({\alpha}_s^2\right) \)corrections to fully-differential top quark decays, JHEP04 (2013) 059 [arXiv:1301.7133] [INSPIRE].

  9. [9]

    A. Czarnecki, S. Groote, J.G. Körner and J.H. Piclum, NNLO QCD corrections to the polarized top quark decay t() → Xb + W+ , Phys. Rev.D 97 (2018) 094008 [arXiv:1803.03658] [INSPIRE].

  10. [10]

    E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD corrections to t-channel single top-quark production and decay, Phys. Rev.D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].

  11. [11]

    E.L. Berger, J. Gao and H.X. Zhu, Differential distributions for t-channel single top-quark production and decay at next-to-next-to-leading order in QCD, JHEP11 (2017) 158 [arXiv:1708.09405] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    J. Gao and A.S. Papanastasiou, Top-quark pair-production and decay at high precision, Phys. Rev.D 96 (2017) 051501 [arXiv:1705.08903] [INSPIRE].

  13. [13]

    A. Behring et all., Higher order corrections to spin correlations in top quark pair production at the LHC, Phys. Rev. Lett.123 (2019) 082001 [arXiv:1901.05407] [INSPIRE].

  14. [14]

    W. Beenakker et al., Electroweak one loop contributions to top pair production in hadron colliders, Nucl. Phys.B 411 (1994) 343 [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J.H. Kuhn, A. Scharf and P. Uwer, Electroweak corrections to top-quark pair production in quark-antiquark annihilation, Eur. Phys. J.C 45 (2006) 139 [hep-ph/0508092] [INSPIRE].

  16. [16]

    W. Bernreuther, M. Fücker and Z.G. Si, Mixed QCD and weak corrections to top quark pair production at hadron colliders, Phys. Lett.B 633 (2006) 54 [Erratum ibid.B 644 (2007) 386] [hep-ph/0508091] [INSPIRE].

  17. [17]

    W. Bernreuther, M. Fuecker and Z.-G. Si, Weak interaction corrections to hadronic top quark pair production, Phys. Rev.D 74 (2006) 113005 [hep-ph/0610334] [INSPIRE].

  18. [18]

    S. Moretti, M.R. Nolten and D.A. Ross, Weak corrections to gluon-induced top-antitop hadro-production, Phys. Lett.B 639 (2006) 513 [Erratum ibid.B 660 (2008) 607] [hep-ph/0603083] [INSPIRE].

  19. [19]

    J.H. Kuhn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J.C 51 (2007) 37 [hep-ph/0610335] [INSPIRE].

  20. [20]

    J.H. Kühn, A. Scharf and P. Uwer, Weak interactions in top-quark pair production at hadron colliders: an update, Phys. Rev.D 91 (2015) 014020 [arXiv:1305.5773] [INSPIRE].

  21. [21]

    M. Czakon et al., Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP10 (2017) 186 [arXiv:1705.04105] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    H.S. Do, S. Groote, J.G. Korner and M.C. Mauser, Electroweak and finite width corrections to top quark decays into transverse and longitudinal W bosons, Phys. Rev.D 67 (2003) 091501 [hep-ph/0209185] [INSPIRE].

  23. [23]

    L. Basso, S. Dittmaier, A. Huss and L. Oggero, Techniques for the treatment of IR divergences in decay processes at NLO and application to the top-quark decay, Eur. Phys. J.C 76 (2016) 56 [arXiv:1507.04676] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M. Beneke et al., Threshold expansion of the gg(q \( \overline{q} \)) → Q \( \overline{Q} \) + X cross section at \( O\left({\alpha}_s^4\right), \)Phys. Lett.B 690 (2010) 483 [arXiv:0911.5166] [INSPIRE].

  25. [25]

    M. Czakon, A. Mitov and G.F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Phys. Rev.D 80 (2009) 074017 [arXiv:0907.1790] [INSPIRE].

  26. [26]

    M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys.B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    M. Cacciari et al., Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett.B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    N. Kidonakis, NNLL threshold resummation for top-pair and single-top production, Phys. Part. Nucl.45 (2014) 714 [arXiv:1210.7813] [INSPIRE].

    Article  Google Scholar 

  29. [29]

    A. Ferroglia, B.D. Pecjak and L.L. Yang, Soft-gluon resummation for boosted top-quark production at hadron colliders, Phys. Rev.D 86 (2012) 034010 [arXiv:1205.3662] [INSPIRE].

  30. [30]

    A. Ferroglia, S. Marzani, B.D. Pecjak and L.L. Yang, Boosted top production: factorization and resummation for single-particle inclusive distributions, JHEP01 (2014) 028 [arXiv:1310.3836] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    M. Czakon et al., Resummation for (boosted) top-quark pair production at NNLO+NNLL’ in QCD, JHEP05 (2018) 149 [arXiv:1803.07623] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    G. Bevilacqua et al., Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, JHEP10 (2012) 110 [arXiv:1207.5018] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    G. Heinrich, A. Maier, R. Nisius, J. Schlenk and J. Winter, NLO QCD corrections to W+Wb \( \overline{b} \)production with leptonic decays in the light of top quark mass and asymmetry measurements, JHEP06 (2014) 158 [arXiv:1312.6659] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    R. Frederix et al., Off-shell single-top production at NLO matched to parton showers, JHEP06 (2016) 027 [arXiv:1603.01178] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, JHEP08 (2016) 155 [arXiv:1607.05571] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    T. Ježo et al., An NLO+PS generator for \( t\overline{t} \)and W t production and decay including non-resonant and interference effects, Eur. Phys. J.C 76 (2016) 691 [arXiv:1607.04538] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys.49 (1973) 652 [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    H. Harari, A new quark model for hadrons, Phys. Lett.B 57 (1975) 265.

    ADS  Article  Google Scholar 

  40. [40]

    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, Search for the standard model Higgs boson at LEP, Phys. Lett.B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

  41. [41]

    Belle-II collaboration, The Belle II physics book, PTEP2019 (2019) 123C01 [Erratum ibid.2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

  42. [42]

    CMS collaboration, Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP08 (2018) 011 [arXiv:1711.02547] [INSPIRE].

  43. [43]

    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].

  44. [44]

    CMS collaboration, Measurement of top quark pair production in association with a Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2020) 056 [arXiv:1907.11270] [INSPIRE].

  45. [45]

    ATLAS collaboration, Measurement of the \( t\overline{t} \)Z and \( t\overline{t} \)W cross sections in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 99 (2019) 072009 [arXiv:1901.03584] [INSPIRE].

  46. [46]

    ATLAS collaboration, Measurement of the W boson polarisation in \( t\overline{t} \)events from pp collisions at \( \sqrt{s} \) = 8 TeV in the lepton + jets channel with ATLAS, Eur. Phys. J.C 77 (2017) 264 [Erratum ibid.C 79 (2019) 19] [arXiv:1612.02577] [INSPIRE].

  47. [47]

    CMS collaboration, Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton + jets final states produced in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett.B 762 (2016) 512 [arXiv:1605.09047] [INSPIRE].

  48. [48]

    N.P. Hartland et al., A Monte Carlo global analysis of the standard model effective field theory: the top quark sector, JHEP04 (2019) 100 [arXiv:1901.05965] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E. Vryonidou et al., O new physics, where art thou? A global search in the top sector, JHEP02 (2020) 131 [arXiv:1910.03606] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    G. Durieux et al., The electro-weak couplings of the top and bottom quarks — Global fit and future prospects, arXiv:1907.10619 [INSPIRE].

  51. [51]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  52. [52]

    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP3 (1956) 65 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  53. [53]

    P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett.B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].

  54. [54]

    J.H. Kuhn and A.A. Penin, Sudakov logarithms in electroweak processes, hep-ph/9906545 [INSPIRE].

  55. [55]

    W. Beenakker and A. Werthenbach, New insights into the perturbative structure of electroweak Sudakov logarithms, Phys. Lett.B 489 (2000) 148 [hep-ph/0005316] [INSPIRE].

  56. [56]

    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev.177 (1969) 2239 [INSPIRE].

  57. [57]

    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev.177 (1969) 2247 [INSPIRE].

  58. [58]

    S. Weinberg, Effective gauge theories, Phys. Lett.B 91 (1980) 51.

    ADS  Article  Google Scholar 

  59. [59]

    A.V. Manohar, Effective field theories, Lect. Notes Phys.479 (1997) 311 [hep-ph/9606222] [INSPIRE].

  60. [60]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    S. Willenbrock and C. Zhang, Effective field theory beyond the standard model, Ann. Rev. Nucl. Part. Sci.64 (2014) 83 [arXiv:1401.0470] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    G. Passarino and M. Trott, The standard model effective field theory and next to leading order, arXiv:1610.08356 [INSPIRE].

  63. [63]

    A. Dedes et al., Feynman rules for the standard model effective field theory in Rξ-gauges, JHEP06 (2017) 143 [arXiv:1704.03888] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. [64]

    W. Bernreuther, M. Fucker and Z.-G. Si, Weak interaction corrections to hadronic top quark pair production: contributions from quark-gluon and \( b\overline{b} \)induced reactions, Phys. Rev.D 78 (2008) 017503 [arXiv:0804.1237] [INSPIRE].

  65. [65]

    U. Baur, Weak boson emission in hadron collider processes, Phys. Rev.D 75 (2007) 013005 [hep-ph/0611241] [INSPIRE].

  66. [66]

    W. Hollik and M. Kollar, NLO QED contributions to top-pair production at hadron collider, Phys. Rev.D 77 (2008) 014008 [arXiv:0708.1697] [INSPIRE].

  67. [67]

    D. Pagani, I. Tsinikos and M. Zaro, The impact of the photon PDF and electroweak corrections on \( t\overline{t} \)distributions, Eur. Phys. J.C 76 (2016) 479 [arXiv:1606.01915] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys.41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    R. Röntsch and M. Schulze, TOPAZ, https://github.com/TOPAZdevelop/TOPAZ (2014).

  70. [70]

    R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t} \) + Z production at the LHC, JHEP07 (2014) 091 [Erratum ibid.09 (2015) 132] [arXiv:1404.1005] [INSPIRE].

  71. [71]

    R. Röntsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP08 (2015) 044 [arXiv:1501.05939] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J.C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    J.M. Campbell, R.K. Ellis and W.T. Giele, A multi-threaded version of MCFM, Eur. Phys. J.C 75 (2015) 246 [arXiv:1503.06182] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    J.M. Campbell, D. Wackeroth and J. Zhou, Study of weak corrections to Drell-Yan, top-quark pair and dijet production at high energies with MCFM, Phys. Rev.D 94 (2016) 093009 [arXiv:1608.03356] [INSPIRE].

  75. [75]

    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  76. [76]

    M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun.185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Till Martini.

Additional information

ArXiv ePrint: 1911.11244

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martini, T., Schulze, M. Electroweak loops as a probe of new physics in \( t\overline{t} \) production at the LHC. J. High Energ. Phys. 2020, 17 (2020). https://doi.org/10.1007/JHEP04(2020)017

Download citation

Keywords

  • Beyond Standard Model
  • Effective Field Theories