Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Axion fragmentation
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Axion fragmentation on the lattice

07 December 2021

Enrico Morgante, Wolfram Ratzinger, … Ben A. Stefanek

Axions from strings: the attractive solution

24 July 2018

Marco Gorghetto, Edward Hardy & Giovanni Villadoro

Gravitational waves from fundamental axion dynamics

09 December 2020

Anish Ghoshal & Alberto Salvio

The stochastic axiverse

29 September 2021

Mario Reig

The axion mass from 5D small instantons

11 March 2020

Tony Gherghetta, Valentin V. Khoze, … Yuri Shirman

On the high-scale instanton interference effect: axion models without domain wall problem

29 August 2019

Mario Reig

Axiogenesis with a heavy QCD axion

19 October 2022

Raymond T. Co, Tony Gherghetta & Keisuke Harigaya

Axion monodromy inflation, trapping mechanisms and the swampland

17 February 2021

Weijie Jin, Robert Brandenberger & Lavinia Heisenberg

Instanton expansions and phase transitions

25 May 2022

John Stout

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 01 April 2020

Axion fragmentation

  • Nayara Fonseca1,2,
  • Enrico Morgante  ORCID: orcid.org/0000-0001-9389-03531,3,
  • Ryosuke Sato1 &
  • …
  • Géraldine Servant1,4 

Journal of High Energy Physics volume 2020, Article number: 10 (2020) Cite this article

  • 229 Accesses

  • 29 Citations

  • 9 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We investigate the production of axion quanta during the early universe evolution of an axion-like field rolling down a wiggly potential. We compute the growth of quantum fluctuations and their back-reaction on the homogeneous zero-mode. We evaluate the transfer of kinetic energy from the zero mode to the quantum fluctuations and the conditions to decelerate the axion zero-mode as a function of the Hubble rate, the slope of the potential, the size of the barriers and the initial field velocity. We discuss how these effects impact the relaxion mechanism.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Svrček and E. Witten, Axions In String Theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].

  2. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

  3. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett.120B (1983) 127 [INSPIRE].

  4. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett.120B (1983) 133 [INSPIRE].

  5. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett.120B (1983) 137 [INSPIRE].

  6. E. Pajer and M. Peloso, A review of Axion Inflation in the era of Planck, Class. Quant. Grav.30 (2013) 214002 [arXiv:1305.3557] [INSPIRE].

  7. P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, Gauge-preheating and the end of axion inflation, JCAP12 (2015) 034 [arXiv:1502.06506] [INSPIRE].

  8. V. Domcke, Y. Ema and K. Mukaida, Chiral Anomaly, Schwinger Effect, Euler-Heisenberg Lagrangian and application to axion inflation, JHEP02 (2020) 055 [arXiv:1910.01205] [INSPIRE].

  9. P. Adshead, J.T. Giblin, M. Pieroni and Z.J. Weiner, Constraining axion inflation with gravitational waves from preheating, arXiv:1909.12842 [INSPIRE].

  10. G. Servant, Baryogenesis from Strong C P Violation and the QCD Axion, Phys. Rev. Lett.113 (2014) 171803 [arXiv:1407.0030] [INSPIRE].

  11. V. Domcke, B. von Harling, E. Morgante and K. Mukaida, Baryogenesis from axion inflation, JCAP10 (2019) 032 [arXiv:1905.13318] [INSPIRE].

  12. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].

  13. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].

  14. D.J.E. Marsh, Axion Cosmology, Phys. Rept.643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

  15. I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys.102 (2018) 89 [arXiv:1801.08127] [INSPIRE].

  16. P.B. Greene, L. Kofman and A.A. Starobinsky, sine-Gordon parametric resonance, Nucl. Phys.B 543 (1999) 423 [hep-ph/9808477] [INSPIRE].

  17. A. Arvanitaki, S. Dimopoulos, M. Galanis, L. Lehner, J.O. Thompson and K. Van Tilburg, The Large-Misalignment Mechanism for the Formation of Compact Axion Structures: Signatures from the QCD Axion to Fuzzy Dark Matter, arXiv:1909.11665 [INSPIRE].

  18. R.T. Co, E. Gonzalez and K. Harigaya, Axion Misalignment Driven to the Hilltop, JHEP05 (2019) 163 [arXiv:1812.11192] [INSPIRE].

  19. B. Freivogel, Anthropic Explanation of the Dark Matter Abundance, JCAP03 (2010) 021 [arXiv:0810.0703] [INSPIRE].

  20. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

  21. L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev.D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

  22. R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from Axion Monodromy Inflation, JCAP06 (2010) 009 [arXiv:0907.2916] [INSPIRE].

  23. J. Jaeckel, V.M. Mehta and L.T. Witkowski, Monodromy Dark Matter, JCAP01 (2017) 036 [arXiv:1605.01367] [INSPIRE].

  24. J. Berges, A. Chatrchyan and J. Jaeckel, Foamy Dark Matter from Monodromies, JCAP08 (2019) 020 [arXiv:1903.03116] [INSPIRE].

  25. M.P. Hertzberg, Quantum Radiation of Oscillons, Phys. Rev.D 82 (2010) 045022 [arXiv:1003.3459] [INSPIRE].

  26. M.A. Amin, Inflaton fragmentation: Emergence of pseudo-stable inflaton lumps (oscillons) after inflation, arXiv:1006.3075 [INSPIRE].

  27. M.A. Amin, R. Easther and H. Finkel, Inflaton Fragmentation and Oscillon Formation in Three Dimensions, JCAP12 (2010) 001 [arXiv:1009.2505] [INSPIRE].

  28. S. Antusch, F. Cefala, S. Krippendorf, F. Muia, S. Orani and F. Quevedo, Oscillons from String Moduli, JHEP01 (2018) 083 [arXiv:1708.08922] [INSPIRE].

  29. J. Ollé, O. Pujolàs and F. Rompineve, Oscillons and Dark Matter, JCAP02 (2020) 006 [arXiv:1906.06352] [INSPIRE].

  30. A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys.51 (1990) 172 [INSPIRE].

  31. J.H. Traschen and R.H. Brandenberger, Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev.D 42 (1990) 2491 [INSPIRE].

  32. L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett.73 (1994) 3195 [hep-th/9405187] [INSPIRE].

  33. Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev.D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].

  34. L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

  35. A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP12 (2016) 101 [arXiv:1607.01786] [INSPIRE].

  36. K. Choi, H. Kim and T. Sekiguchi, Dynamics of the cosmological relaxation after reheating, Phys. Rev.D 95 (2017) 075008 [arXiv:1611.08569] [INSPIRE].

  37. W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of Relaxed Inflation, JHEP02 (2018) 084 [arXiv:1706.03072] [INSPIRE].

  38. O. Matsedonskyi and M. Montull, Light Higgs Boson from a Pole Attractor, Phys. Rev.D 98 (2018) 015026 [arXiv:1709.09090] [INSPIRE].

  39. N. Fonseca, E. Morgante and G. Servant, Higgs relaxation after inflation, JHEP10 (2018) 020 [arXiv:1805.04543] [INSPIRE].

  40. N. Fonseca and E. Morgante, Relaxion Dark Matter, Phys. Rev.D 100 (2019) 055010 [arXiv:1809.04534] [INSPIRE].

  41. M. Ibe, Y. Shoji and M. Suzuki, Fast-Rolling Relaxion, JHEP11 (2019) 140 [arXiv:1904.02545] [INSPIRE].

  42. S.-J. Wang, Paper-boat relaxion, Phys. Rev.D 99 (2019) 095026 [arXiv:1811.06520] [INSPIRE].

  43. K. Kadota, U. Min, M. Son and F. Ye, Cosmological Relaxation from Dark Fermion Production, JHEP02 (2020) 135 [arXiv:1909.07706] [INSPIRE].

  44. N. Fonseca, E. Morgante, R. Sato and G. Servant, Relaxion Fluctuations (Self-stopping Relaxion) and Overview of Relaxion Stopping Mechanisms, arXiv:1911.08473 [INSPIRE].

  45. N. McLachlan, Theory and Applications of Mathieu Functions, Oxford University Press, Clarendon (1947).

  46. I. Kovacic, R. Rand and S.M. Sah, Mathieu’s equation and its generalizations: Overview of stability charts and their features, Appl. Mech. Rev.70 (2018) 020802.

  47. E. Morgante and R. Sato, Lattice analysis of relaxion fragmentation and its cosmological consequences, in preparation.

  48. T. Prokopec and T.G. Roos, Lattice study of classical inflaton decay, Phys. Rev.D 55 (1997) 3768 [hep-ph/9610400] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. DESY, Notkestrasse 85, D-22607, Hamburg, Germany

    Nayara Fonseca, Enrico Morgante, Ryosuke Sato & Géraldine Servant

  2. Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy

    Nayara Fonseca

  3. PRISMA+ Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg-Universität Mainz, D-55099, Mainz, Germany

    Enrico Morgante

  4. II. Institute of Theoretical Physics, Universität Hamburg, D-22761, Hamburg, Germany

    Géraldine Servant

Authors
  1. Nayara Fonseca
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Enrico Morgante
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ryosuke Sato
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Géraldine Servant
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Enrico Morgante.

Additional information

ArXiv ePrint: 1911.08472

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fonseca, N., Morgante, E., Sato, R. et al. Axion fragmentation. J. High Energ. Phys. 2020, 10 (2020). https://doi.org/10.1007/JHEP04(2020)010

Download citation

  • Received: 13 December 2019

  • Revised: 26 February 2020

  • Accepted: 17 March 2020

  • Published: 01 April 2020

  • DOI: https://doi.org/10.1007/JHEP04(2020)010

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.