Abstract
We investigate the production of axion quanta during the early universe evolution of an axion-like field rolling down a wiggly potential. We compute the growth of quantum fluctuations and their back-reaction on the homogeneous zero-mode. We evaluate the transfer of kinetic energy from the zero mode to the quantum fluctuations and the conditions to decelerate the axion zero-mode as a function of the Hubble rate, the slope of the potential, the size of the barriers and the initial field velocity. We discuss how these effects impact the relaxion mechanism.
References
P. Svrček and E. Witten, Axions In String Theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett.120B (1983) 127 [INSPIRE].
L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett.120B (1983) 133 [INSPIRE].
M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett.120B (1983) 137 [INSPIRE].
E. Pajer and M. Peloso, A review of Axion Inflation in the era of Planck, Class. Quant. Grav.30 (2013) 214002 [arXiv:1305.3557] [INSPIRE].
P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, Gauge-preheating and the end of axion inflation, JCAP12 (2015) 034 [arXiv:1502.06506] [INSPIRE].
V. Domcke, Y. Ema and K. Mukaida, Chiral Anomaly, Schwinger Effect, Euler-Heisenberg Lagrangian and application to axion inflation, JHEP02 (2020) 055 [arXiv:1910.01205] [INSPIRE].
P. Adshead, J.T. Giblin, M. Pieroni and Z.J. Weiner, Constraining axion inflation with gravitational waves from preheating, arXiv:1909.12842 [INSPIRE].
G. Servant, Baryogenesis from Strong C P Violation and the QCD Axion, Phys. Rev. Lett.113 (2014) 171803 [arXiv:1407.0030] [INSPIRE].
V. Domcke, B. von Harling, E. Morgante and K. Mukaida, Baryogenesis from axion inflation, JCAP10 (2019) 032 [arXiv:1905.13318] [INSPIRE].
F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].
R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
D.J.E. Marsh, Axion Cosmology, Phys. Rept.643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys.102 (2018) 89 [arXiv:1801.08127] [INSPIRE].
P.B. Greene, L. Kofman and A.A. Starobinsky, sine-Gordon parametric resonance, Nucl. Phys.B 543 (1999) 423 [hep-ph/9808477] [INSPIRE].
A. Arvanitaki, S. Dimopoulos, M. Galanis, L. Lehner, J.O. Thompson and K. Van Tilburg, The Large-Misalignment Mechanism for the Formation of Compact Axion Structures: Signatures from the QCD Axion to Fuzzy Dark Matter, arXiv:1909.11665 [INSPIRE].
R.T. Co, E. Gonzalez and K. Harigaya, Axion Misalignment Driven to the Hilltop, JHEP05 (2019) 163 [arXiv:1812.11192] [INSPIRE].
B. Freivogel, Anthropic Explanation of the Dark Matter Abundance, JCAP03 (2010) 021 [arXiv:0810.0703] [INSPIRE].
P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev.D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from Axion Monodromy Inflation, JCAP06 (2010) 009 [arXiv:0907.2916] [INSPIRE].
J. Jaeckel, V.M. Mehta and L.T. Witkowski, Monodromy Dark Matter, JCAP01 (2017) 036 [arXiv:1605.01367] [INSPIRE].
J. Berges, A. Chatrchyan and J. Jaeckel, Foamy Dark Matter from Monodromies, JCAP08 (2019) 020 [arXiv:1903.03116] [INSPIRE].
M.P. Hertzberg, Quantum Radiation of Oscillons, Phys. Rev.D 82 (2010) 045022 [arXiv:1003.3459] [INSPIRE].
M.A. Amin, Inflaton fragmentation: Emergence of pseudo-stable inflaton lumps (oscillons) after inflation, arXiv:1006.3075 [INSPIRE].
M.A. Amin, R. Easther and H. Finkel, Inflaton Fragmentation and Oscillon Formation in Three Dimensions, JCAP12 (2010) 001 [arXiv:1009.2505] [INSPIRE].
S. Antusch, F. Cefala, S. Krippendorf, F. Muia, S. Orani and F. Quevedo, Oscillons from String Moduli, JHEP01 (2018) 083 [arXiv:1708.08922] [INSPIRE].
J. Ollé, O. Pujolàs and F. Rompineve, Oscillons and Dark Matter, JCAP02 (2020) 006 [arXiv:1906.06352] [INSPIRE].
A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys.51 (1990) 172 [INSPIRE].
J.H. Traschen and R.H. Brandenberger, Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev.D 42 (1990) 2491 [INSPIRE].
L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett.73 (1994) 3195 [hep-th/9405187] [INSPIRE].
Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev.D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].
L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP12 (2016) 101 [arXiv:1607.01786] [INSPIRE].
K. Choi, H. Kim and T. Sekiguchi, Dynamics of the cosmological relaxation after reheating, Phys. Rev.D 95 (2017) 075008 [arXiv:1611.08569] [INSPIRE].
W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of Relaxed Inflation, JHEP02 (2018) 084 [arXiv:1706.03072] [INSPIRE].
O. Matsedonskyi and M. Montull, Light Higgs Boson from a Pole Attractor, Phys. Rev.D 98 (2018) 015026 [arXiv:1709.09090] [INSPIRE].
N. Fonseca, E. Morgante and G. Servant, Higgs relaxation after inflation, JHEP10 (2018) 020 [arXiv:1805.04543] [INSPIRE].
N. Fonseca and E. Morgante, Relaxion Dark Matter, Phys. Rev.D 100 (2019) 055010 [arXiv:1809.04534] [INSPIRE].
M. Ibe, Y. Shoji and M. Suzuki, Fast-Rolling Relaxion, JHEP11 (2019) 140 [arXiv:1904.02545] [INSPIRE].
S.-J. Wang, Paper-boat relaxion, Phys. Rev.D 99 (2019) 095026 [arXiv:1811.06520] [INSPIRE].
K. Kadota, U. Min, M. Son and F. Ye, Cosmological Relaxation from Dark Fermion Production, JHEP02 (2020) 135 [arXiv:1909.07706] [INSPIRE].
N. Fonseca, E. Morgante, R. Sato and G. Servant, Relaxion Fluctuations (Self-stopping Relaxion) and Overview of Relaxion Stopping Mechanisms, arXiv:1911.08473 [INSPIRE].
N. McLachlan, Theory and Applications of Mathieu Functions, Oxford University Press, Clarendon (1947).
I. Kovacic, R. Rand and S.M. Sah, Mathieu’s equation and its generalizations: Overview of stability charts and their features, Appl. Mech. Rev.70 (2018) 020802.
E. Morgante and R. Sato, Lattice analysis of relaxion fragmentation and its cosmological consequences, in preparation.
T. Prokopec and T.G. Roos, Lattice study of classical inflaton decay, Phys. Rev.D 55 (1997) 3768 [hep-ph/9610400] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1911.08472
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Fonseca, N., Morgante, E., Sato, R. et al. Axion fragmentation. J. High Energ. Phys. 2020, 10 (2020). https://doi.org/10.1007/JHEP04(2020)010
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2020)010
Keywords
- Beyond Standard Model
- Cosmology of Theories beyond the SM