Skip to main content

Clustering of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) kinematic distributions with ClusterKinG

An Erratum to this article was published on 18 May 2021

This article has been updated

A preprint version of the article is available at arXiv.

Abstract

New Physics can manifest itself in kinematic distributions of particle decays. The parameter space defining the shape of such distributions can be large which is chalenging for both theoretical and experimental studies. Using clustering algorithms, the parameter space can however be dissected into subsets (clusters) which correspond to similar kinematic distributions. Clusters can then be represented by benchmark points, which allow for less involved studies and a concise presentation of the results. We demonstrate this concept using the Python package ClusterKinG, an easy to use framework for the clustering of distributions that particularly aims to make these techniques more accessible in a High Energy Physics context. As an example we consider \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) distributions and discuss various clustering methods and possible implications for future experimental analyses.

Change history

References

  1. BaBar collaboration, Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \)decays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

  2. A. Carvalho, M. Dall’Osso, T. Dorigo, F. Goertz, C.A. Gottardo and M. Tosi, Higgs Pair Production: Choosing Benchmarks With Cluster Analysis, JHEP04 (2016) 126 [arXiv:1507.02245] [INSPIRE].

    ADS  Google Scholar 

  3. A. Carvalho et al., Analytical parametrization and shape classification of anomalous HH production in the EFT approach, arXiv:1608.06578 [INSPIRE].

  4. A. Carvalho, F. Goertz, K. Mimasu, M. Gouzevitch and A. Aggarwal, On the reinterpretation of non-resonant searches for Higgs boson pairs, arXiv:1710.08261 [INSPIRE].

  5. CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev.D 94 (2016) 052012 [arXiv:1603.06896] [INSPIRE].

  6. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  Google Scholar 

  7. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  Article  Google Scholar 

  8. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    ADS  Article  Google Scholar 

  9. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    ADS  Article  Google Scholar 

  10. A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: The Standard Model Effective Field Theory Toolkit, Eur. Phys. J.C 77 (2017) 405 [arXiv:1704.04504] [INSPIRE].

    ADS  Article  Google Scholar 

  11. J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for b → s and b → c transitions, JHEP05 (2016) 037 [arXiv:1512.02830] [INSPIRE].

    ADS  Article  Google Scholar 

  12. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP03 (2018) 016 [arXiv:1709.04486] [INSPIRE].

    ADS  Article  Google Scholar 

  13. W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale: matching at one loop, JHEP10 (2019) 197 [arXiv:1908.05295] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard Model at One Loop: Complete Renormalization Group Evolution below the Electroweak Scale, JHEP09 (2017) 158 [arXiv:1704.06639] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Anomalous Dimensions, JHEP01 (2018) 084 [arXiv:1711.05270] [INSPIRE].

    ADS  Article  Google Scholar 

  16. J.C. Criado, MatchingTools: a Python library for symbolic effective field theory calculations, Comput. Phys. Commun.227 (2018) 42 [arXiv:1710.06445] [INSPIRE].

    ADS  Article  Google Scholar 

  17. J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J.C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].

    ADS  Article  Google Scholar 

  18. J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun.232 (2018) 71 [arXiv:1712.05298] [INSPIRE].

    ADS  Article  Google Scholar 

  19. J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A Global Likelihood for Precision Constraints and Flavour Anomalies, Eur. Phys. J.C 79 (2019) 509 [arXiv:1810.07698] [INSPIRE].

    ADS  Article  Google Scholar 

  20. J.C. Criado, BasisGen: automatic generation of operator bases, Eur. Phys. J.C 79 (2019) 256 [arXiv:1901.03501] [INSPIRE].

    ADS  Article  Google Scholar 

  21. B. Gripaios and D. Sutherland, DEFT: A program for operators in EFT, JHEP01 (2019) 128 [arXiv:1807.07546] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. I. Brivio et al., Computing Tools for the SMEFT, in Computing Tools for the SMEFT, J. Aebischer et al. eds., arXiv:1910.11003 [INSPIRE].

  23. D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].

  24. W. Porod, F. Staub and A. Vicente, A Flavor Kit for BSM models, Eur. Phys. J.C 74 (2014) 2992 [arXiv:1405.1434] [INSPIRE].

    ADS  Article  Google Scholar 

  25. F. Mahmoudi, SuperIso: A Program for calculating the isospin asymmetry of B → K*γ in the MSSM, Comput. Phys. Commun.178 (2008) 745 [arXiv:0710.2067] [INSPIRE].

    Google Scholar 

  26. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ecolliders, Comput. Phys. Commun.153 (2003) 275 [hep-ph/0301101] [INSPIRE].

  27. W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun.183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

  28. J.A. Evans and D. Shih, FormFlavor Manual, arXiv:1606.00003 [INSPIRE].

  29. A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, SmeftFR — Feynman rules generator for the Standard Model Effective Field Theory, Comput. Phys. Commun.247 (2020) 106931 [arXiv:1904.03204] [INSPIRE].

    Article  Google Scholar 

  30. I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP12 (2017) 070 [arXiv:1709.06492] [INSPIRE].

    ADS  Article  Google Scholar 

  31. W. Altmannshofer, P.S. Bhupal Dev and A. Soni, \( {R}_{D^{\left(\ast \right)}} \)anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev.D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].

  32. C. Murgui, A. Peñuelas, M. Jung and A. Pich, Global fit to b → cτν transitions, JHEP09 (2019) 103 [arXiv:1904.09311] [INSPIRE].

  33. R.-X. Shi, L.-S. Geng, B. Grinstein, S. Jäger and J. Martin Camalich, Revisiting the new-physics interpretation of the b → cτν data, JHEP12 (2019) 065 [arXiv:1905.08498] [INSPIRE].

  34. D. Bečirević, M. Fedele, I. Nišandžić and A. Tayduganov, Lepton Flavor Universality tests through angular observables of \( \overline{B}\to {D}^{\left(\ast \right)}\mathrm{\ell}\overline{\nu } \)decay modes, arXiv:1907.02257 [INSPIRE].

  35. J.D. Gómez, N. Quintero and E. Rojas, Charged current \( b\to c\tau {\overline{\nu}}_{\tau } \)anomalies in a general Wboson scenario, Phys. Rev.D 100 (2019) 093003 [arXiv:1907.08357] [INSPIRE].

  36. M. Algueró et al., Emerging patterns of New Physics with and without Lepton Flavour Universal contributions, Eur. Phys. J.C 79 (2019) 714 [arXiv:1903.09578] [INSPIRE].

  37. M. Ciuchini et al., New Physics in b → s+confronts new data on Lepton Universality, Eur. Phys. J.C 79 (2019) 719 [arXiv:1903.09632] [INSPIRE].

  38. A. Datta, J. Kumar and D. London, The B anomalies and new physics in b → se+e , Phys. Lett.B 797 (2019) 134858 [arXiv:1903.10086] [INSPIRE].

    Google Scholar 

  39. J. Aebischer, W. Altmannshofer, D. Guadagnoli, M. Reboud, P. Stangl and D.M. Straub, B-decay discrepancies after Moriond 2019, arXiv:1903.10434 [INSPIRE].

  40. F.U. Bernlochner, S. Duell, Z. Ligeti, M. Papucci and D.J. Robinson, Das ist der HAMMER: Consistent new physics interpretations of semileptonic decays, arXiv:2002.00020 [INSPIRE].

  41. S. Duell, F. Bernlochner, Z. Ligeti, M. Papucci and D. Robinson, HAMMER: Reweighting tool for simulated data samples, PoS(ICHEP2016)1074.

  42. F.J. Massey, The Kolmogorov-Smirnov test for goodness of fit, J. Am. Statist. Assoc.46 (1951) 68.

    Article  Google Scholar 

  43. A.N. Pettitt, A two-sample Anderson-Darling rank statistic, Biometrika63 (1976) 161.

    MathSciNet  MATH  Google Scholar 

  44. S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist.9 (1938) 60.

    Article  Google Scholar 

  45. J.A. Hartigan, Clustering algorithms, Wiley series in probability and mathematical statistics, Wiley, New York U.S.A. (1975).

  46. J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 1: Statistics, Berkeley U.S.A. (1967), pg. 281, University of California Press, Berkeley U.S.A. (1967).

  47. L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, New York U.S.A. (1990).

    Book  Google Scholar 

  48. W. McKinney, Data structures for statistical computing in python, in Proceedings of the 9th Python in Science Conference, S. van der Walt and J. Millman eds., Austin U.S.A. (2010), pg. 51.

  49. E. Jones et al., SciPy: Open source scientific tools for Python, (2001).

  50. A. Celis, M. Jung, X.-Q. Li and A. Pich, Scalar contributions to b → c(u)τν transitions, Phys. Lett.B 771 (2017) 168 [arXiv:1612.07757] [INSPIRE].

    ADS  Article  Google Scholar 

  51. M. Blanke, A. Crivellin, S. de Boer, T. Kitahara, M. Moscati, U. Nierste et al., Impact of polarization observables and Bc→ τν on new physics explanations of the b → cτν anomaly, Phys. Rev.D 99 (2019) 075006 [arXiv:1811.09603] [INSPIRE].

  52. S. Bhattacharya, S. Nandi and S. Kumar Patra, b → cτντ Decays: a catalogue to compare, constrain and correlate new physics effects, Eur. Phys. J.C 79 (2019) 268 [arXiv:1805.08222] [INSPIRE].

  53. D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev.D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].

  54. B. Bhattacharya, A. Datta, S. Kamali and D. London, CP Violation in \( {\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu } \), JHEP05 (2019) 191 [arXiv:1903.02567] [INSPIRE].

    Google Scholar 

  55. Belle, Belle-II collaboration, Semitauonic B decays at Belle/Belle II, in 10th International Workshop on the CKM Unitarity Triangle (CKM 2018) Heidelberg, Germany, September 17-21, 2018, 2019, arXiv:1901.06380 [INSPIRE].

  56. M. Jung and D.M. Straub, Constraining new physics in b → cν transitions, JHEP01 (2019) 009 [arXiv:1801.01112] [INSPIRE].

  57. R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}\left(\to, {\mathrm{\ell}}^{-}{\overline{\nu}}_{\mathrm{\ell}}{\nu}_{\tau}\right){\overline{\nu}}_{\tau } \), Phys. Rev.D 94 (2016) 094021 [arXiv:1602.07671] [INSPIRE].

  58. J. Gratrex, M. Hopfer and R. Zwicky, Generalised helicity formalism, higher moments and the \( B\to {K}_{J_K}\left(\to K\pi \right){\mathrm{\ell}}_1,{\mathrm{\ell}}_2 \)angular distributions, Phys. Rev.D 93 (2016) 054008 [arXiv:1506.03970] [INSPIRE].

  59. D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of \( \overline{B}\to {D}^{\left(\ast \right)}\mathrm{\ell}{\overline{\nu}}_{\mathrm{\ell}} \)decays and search of New Physics, Nucl. Phys.B 946 (2019) 114707 [arXiv:1602.03030] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Lieret.

Additional information

ArXiv ePrint: 1909.11088

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aebischer, J., Kuhr, T. & Lieret, K. Clustering of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) kinematic distributions with ClusterKinG. J. High Energ. Phys. 2020, 7 (2020). https://doi.org/10.1007/JHEP04(2020)007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2020)007

Keywords

  • B physics
  • Beyond Standard Model
  • e+-e Experiments
  • Flavor physics