Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 15 April 2019
  • Volume 2019, article number 100, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector
Download PDF
  • Nathan P. Hartland1,2,
  • Fabio Maltoni  ORCID: orcid.org/0000-0003-4890-06763,4,
  • Emanuele R. Nocera  ORCID: orcid.org/0000-0001-9886-48242,5,
  • Juan Rojo  ORCID: orcid.org/0000-0003-4279-21921,2,
  • Emma Slade  ORCID: orcid.org/0000-0002-2955-06696,
  • Eleni Vryonidou7 &
  • …
  • Cen Zhang8 
  • 923 Accesses

  • 151 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a novel framework for carrying out global analyses of the Standard Model Effective Field Theory (SMEFT) at dimension-six: SMEFiT. This approach is based on the Monte Carlo replica method for deriving a faithful estimate of the experimental and theoretical uncertainties and enables one to construct the probability distribution in the space of the SMEFT degrees of freedom. As a proof of concept of the SMEFiT methodology, we present a first study of the constraints on the SMEFT provided by top quark production measurements from the LHC. Our analysis includes more than 30 independent measurements from 10 different processes at \( \sqrt{s} \) = 8 and 13 TeV such as inclusive \( t\overline{t} \) and single-top production and the associated production of top quarks with weak vector bosons and the Higgs boson. State-of-the-art theoretical calculations are adopted both for the Standard Model and for the SMEFT contributions, where in the latter case NLO QCD corrections are included for the majority of processes. We derive bounds for the 34 degrees of freedom relevant for the interpretation of the LHC top quark data and compare these bounds with previously reported constraints. Our study illustrates the significant potential of LHC precision measurements to constrain physics beyond the Standard Model in a model-independent way, and paves the way towards a global analysis of the SMEFT.

Article PDF

Download to read the full article text

Similar content being viewed by others

Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC

Article Open access 12 November 2021

Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory

Article Open access 29 April 2021

The top quark electro-weak couplings after LHC Run 2

Article Open access 04 February 2022

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  2. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  3. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman, Precision Probes of QCD at High Energies, JHEP 07 (2017) 097 [arXiv:1706.03068] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].

    Article  Google Scholar 

  7. S. Alioli, M. Farina, D. Pappadopulo and J.T. Ruderman, Catching a New Force by the Tail, Phys. Rev. Lett. 120 (2018) 101801 [arXiv:1712.02347] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Alioli, W. Dekens, M. Girard and E. Mereghetti, NLO QCD corrections to SM-EFT dilepton and electroweak Higgs boson production, matched to parton shower in POWHEG, JHEP 08 (2018) 205 [arXiv:1804.07407] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Alte, M. König and W. Shepherd, Consistent Searches for SMEFT Effects in Non-Resonant Dijet Events, JHEP 01 (2018) 094 [arXiv:1711.07484] [INSPIRE].

    Article  ADS  Google Scholar 

  10. D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].

  11. N. Castro, J. Erdmann, C. Grunwald, K. Kröninger and N.-A. Rosien, EFTfitter — A tool for interpreting measurements in the context of effective field theories, Eur. Phys. J. C 76 (2016) 432 [arXiv:1605.05585] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 12 (2016) 135 [arXiv:1608.01509] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Ellis, V. Sanz and T. You, Complete Higgs Sector Constraints on Dimension-6 Operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Buckley et al., Results from TopFitter, PoS(CKM2016)127 (2016) [arXiv:1612.02294] [INSPIRE].

  16. A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].

  17. A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].

    ADS  Google Scholar 

  18. A. Biekötter, T. Corbett and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, arXiv:1812.07587 [INSPIRE].

  19. M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].

    Article  ADS  Google Scholar 

  20. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

    ADS  Google Scholar 

  21. S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Collider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Gao, L. Harland-Lang and J. Rojo, The Structure of the Proton in the LHC Precision Era, Phys. Rept. 742 (2018) 1 [arXiv:1709.04922] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Rojo et al., The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II, J. Phys. G 42 (2015) 103103 [arXiv:1507.00556] [INSPIRE].

    Article  ADS  Google Scholar 

  26. NNPDF collaboration, Unbiased determination of the proton structure function F p2 with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [INSPIRE].

  27. NNPDF collaboration, Neural network determination of parton distributions: The Nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [INSPIRE].

  28. NNPDF collaboration, A Determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].

  29. NNPDF collaboration, Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].

  30. R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. R.D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  33. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  34. NNPDF collaboration, A Determination of the Charm Content of the Proton, Eur. Phys. J. C 76 (2016) 647 [arXiv:1605.06515] [INSPIRE].

  35. NNPDF collaboration, A first unbiased global determination of polarized PDFs and their uncertainties, Nucl. Phys. B 887 (2014) 276 [arXiv:1406.5539] [INSPIRE].

  36. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  37. NNPDF collaboration, A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties, Eur. Phys. J. C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].

  38. NNPDF collaboration, Charged hadron fragmentation functions from collider data, Eur. Phys. J. C 78 (2018) 651 [arXiv:1807.03310] [INSPIRE].

  39. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  40. F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].

    Article  ADS  Google Scholar 

  41. C. Degrande, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation, JHEP 10 (2018) 005 [arXiv:1804.07773] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Chala, J. Santiago and M. Spannowsky, Constraining four-fermion operators using rare top decays, arXiv:1809.09624 [INSPIRE].

  43. G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].

    ADS  Google Scholar 

  44. J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: A Roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].

  45. J. D’Hondt, A. Mariotti, K. Mimasu, S. Moortgat and C. Zhang, Learning to pinpoint effective operators at the LHC: a study of the \( \mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}} \) signature, JHEP 11 (2018) 131 [arXiv:1807.02130] [INSPIRE].

  46. G. Durieux, J. Gu, E. Vryonidou and C. Zhang, Probing top-quark couplings indirectly at Higgs factories, Chin. Phys. C 42 (2018) 123107 [arXiv:1809.03520] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].

    ADS  Google Scholar 

  48. A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  49. S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    Article  ADS  Google Scholar 

  50. C. Degrande et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. A. Kobach, Baryon Number, Lepton Number and Operator Dimension in the Standard Model, Phys. Lett. B 758 (2016) 455 [arXiv:1604.05726] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J. C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].

    Article  ADS  Google Scholar 

  53. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  ADS  Google Scholar 

  54. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  55. C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, Chin. Phys. C 42 (2018) 023104 [arXiv:1708.05928] [INSPIRE].

    Article  ADS  Google Scholar 

  56. C. Englert and M. Russell, Top quark electroweak couplings at future lepton colliders, Eur. Phys. J. C 77 (2017) 535 [arXiv:1704.01782] [INSPIRE].

    Article  ADS  Google Scholar 

  57. I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].

    Article  ADS  Google Scholar 

  58. P.L. Cho and E.H. Simmons, Searching for G3 in \( t\overline{t} \) production, Phys. Rev. D 51 (1995) 2360 [hep-ph/9408206] [INSPIRE].

  59. F. Krauss, S. Kuttimalai and T. Plehn, LHC multijet events as a probe for anomalous dimension-six gluon interactions, Phys. Rev. D 95 (2017) 035024 [arXiv:1611.00767] [INSPIRE].

    ADS  Google Scholar 

  60. V. Hirschi, F. Maltoni, I. Tsinikos and E. Vryonidou, Constraining anomalous gluon self-interactions at the LHC: a reappraisal, JHEP 07 (2018) 093 [arXiv:1806.04696] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev. D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].

  63. I. Brivio and M. Trott, Scheming in the SMEFT… and a reparameterization invariance!, JHEP 07 (2017) 148 [Addendum ibid. 05 (2018) 136] [arXiv:1701.06424] [INSPIRE].

  64. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].

    ADS  Google Scholar 

  65. J. Bramante, A. Delgado, L. Lehman and A. Martin, Boosted Higgses from chromomagnetic b’s: \( b\overline{b}h \) at high luminosity, Phys. Rev. D 93 (2016) 053001 [arXiv:1410.3484] [INSPIRE].

  66. C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev. D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].

    ADS  Google Scholar 

  68. D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].

    ADS  Google Scholar 

  69. O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].

    Article  ADS  Google Scholar 

  70. G. Durieux, M. Perelló, M. Vos and C. Zhang, Global and optimal probes for the top-quark effective field theory at future lepton colliders, JHEP 10 (2018) 168 [arXiv:1807.02121] [INSPIRE].

    Article  ADS  Google Scholar 

  71. P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].

    Article  ADS  Google Scholar 

  72. F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J. C 74 (2014) 2710 [arXiv:1311.1829] [INSPIRE].

    Article  ADS  Google Scholar 

  73. F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].

    Article  ADS  Google Scholar 

  74. F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].

    Article  ADS  Google Scholar 

  75. K. Mimasu, V. Sanz and C. Williams, Higher Order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons, JHEP 08 (2016) 039 [arXiv:1512.02572] [INSPIRE].

    Article  ADS  Google Scholar 

  76. C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD, Eur. Phys. J. C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Fichet, A. Tonero and P. Rebello Teles, Sharpening the shape analysis for higher-dimensional operator searches, Phys. Rev. D 96 (2017) 036003 [arXiv:1611.01165] [INSPIRE].

    ADS  Google Scholar 

  78. C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev. D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].

    ADS  Google Scholar 

  79. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  80. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    Article  ADS  Google Scholar 

  81. N. Deutschmann, C. Duhr, F. Maltoni and E. Vryonidou, Gluon-fusion Higgs production in the Standard Model Effective Field Theory, JHEP 12 (2017) 063 [Erratum ibid. 02 (2018) 159] [arXiv:1708.00460] [INSPIRE].

  82. G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP 10 (2017) 027 [arXiv:1707.08060] [INSPIRE].

    Article  ADS  Google Scholar 

  84. A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115 [arXiv:1609.06312] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE].

    Article  ADS  Google Scholar 

  86. A. Greljo and D. Marzocca, High-p T dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP 08 (2017) 123 [arXiv:1706.03783] [INSPIRE].

    Article  ADS  Google Scholar 

  88. R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].

    Article  ADS  Google Scholar 

  89. O. Domenech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].

    ADS  Google Scholar 

  90. A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].

    ADS  Google Scholar 

  91. A. Biekötter, J. Brehmer and T. Plehn, Extending the limits of Higgs effective theory, Phys. Rev. D 94 (2016) 055032 [arXiv:1602.05202] [INSPIRE].

    ADS  Google Scholar 

  92. A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].

    ADS  Google Scholar 

  93. ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 538 [arXiv:1511.04716] [INSPIRE].

  94. CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 75 (2015) 542 [arXiv:1505.04480] [INSPIRE].

  95. CMS collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV and impact on parton distribution functions, Eur. Phys. J. C 77 (2017) 459 [arXiv:1703.01630] [INSPIRE].

  96. ATLAS collaboration, Measurement of the W boson polarisation in \( t\overline{t} \) events from pp collisions at \( \sqrt{s} \) = 8 TeV in the lepton + jets channel with ATLAS, Eur. Phys. J. C 77 (2017) 264 [Erratum ibid. C 79 (2019) 19] [arXiv:1612.02577] [INSPIRE].

  97. CMS collaboration, Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton + jets final states produced in pp collisions at \( \sqrt{s} \) = 8TeV, Phys. Lett. B 762 (2016) 512 [arXiv:1605.09047] [INSPIRE].

  98. CMS collaboration, Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV, Phys. Rev. D 95 (2017) 092001 [arXiv:1610.04191] [INSPIRE].

  99. ATLAS collaboration, Determination of the parton distribution functions of the proton from ATLAS measurements of differential W and Z/γ * and \( t\overline{t} \) cross sections, ATL-PHYS-PUB-2018-017.

  100. CMS collaboration, Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 97 (2018) 112003 [arXiv:1803.08856] [INSPIRE].

  101. CMS collaboration, Measurement of normalized differential \( \mathrm{t}\overline{\mathrm{t}} \) cross sections in the dilepton channel from pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 04 (2018) 060 [arXiv:1708.07638] [INSPIRE].

  102. CMS collaboration, Measurements of \( t\overline{t} \) cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 776 (2018) 355 [arXiv:1705.10141] [INSPIRE].

  103. CMS collaboration, Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 78 (2018) 140 [arXiv:1710.10614] [INSPIRE].

  104. CMS collaboration, Observation of top quark pairs produced in association with a vector boson in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 01 (2016) 096 [arXiv:1510.01131] [INSPIRE].

  105. CMS collaboration, Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 011 [arXiv:1711.02547] [INSPIRE].

  106. ATLAS collaboration, Measurement of the \( t\overline{t}W \) and \( t\overline{t}Z \) production cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2015) 172 [arXiv:1509.05276] [INSPIRE].

  107. ATLAS collaboration, Measurement of the \( t\overline{t}Z \) and \( t\overline{t}W \) production cross sections in multilepton final states using 3.2 fb −1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 40 [arXiv:1609.01599] [INSPIRE].

  108. CMS collaboration, Observation of \( \mathrm{t}\overline{\mathrm{t}}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].

  109. ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].

  110. CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb| CKM matrix element in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE].

  111. CMS collaboration, Search for s channel single top quark production in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 09 (2016) 027 [arXiv:1603.02555] [INSPIRE].

  112. ATLAS collaboration, Evidence for single top-quark production in the s-channel in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector using the Matrix Element Method, Phys. Lett. B 756 (2016) 228 [arXiv:1511.05980] [INSPIRE].

  113. ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C 77 (2017) 531 [arXiv:1702.02859] [INSPIRE].

  114. ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 04 (2017) 086 [arXiv:1609.03920] [INSPIRE].

  115. CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 772 (2017) 752 [arXiv:1610.00678] [INSPIRE].

  116. CMS collaboration, Single top t-channel differential cross section at 8 TeV, CMS-PAS-TOP-14-004.

  117. CMS collaboration, Measurement of the differential cross section for t-channel single-top-quark production at \( \sqrt{s} \) = 13 TeV, CMS-PAS-TOP-16-004.

  118. ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment, JHEP 01 (2016) 064 [arXiv:1510.03752] [INSPIRE].

  119. CMS collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett. 112 (2014) 231802 [arXiv:1401.2942] [INSPIRE].

  120. ATLAS collaboration, Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at \( \sqrt{s} \) = 13 TeV with ATLAS, JHEP 01 (2018) 063 [arXiv:1612.07231] [INSPIRE].

  121. CMS collaboration, Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 10 (2018) 117 [arXiv:1805.07399] [INSPIRE].

  122. CMS collaboration, Measurement of the associated production of a single top quark and a Z boson in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 779 (2018) 358 [arXiv:1712.02825] [INSPIRE].

  123. ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at 13 TeV with the ATLAS detector, Phys. Lett. B 780 (2018) 557 [arXiv:1710.03659] [INSPIRE].

  124. M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].

    Article  ADS  Google Scholar 

  125. M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].

    Article  ADS  Google Scholar 

  126. J. Gao and A.S. Papanastasiou, Top-quark pair-production and decay at high precision, Phys. Rev. D 96 (2017) 051501 [arXiv:1705.08903] [INSPIRE].

    ADS  Google Scholar 

  127. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  128. R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].

    Article  ADS  Google Scholar 

  129. M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, arXiv:1704.08551 [INSPIRE].

  130. M. Czakon, N.P. Hartland, A. Mitov, E.R. Nocera and J. Rojo, Pinning down the large-x gluon with NNLO top-quark pair differential distributions, JHEP 04 (2017) 044 [arXiv:1611.08609] [INSPIRE].

    Article  ADS  Google Scholar 

  131. CMS collaboration, Measurements of \( \mathrm{t}\overline{\mathrm{t}} \) differential cross sections in proton-proton collisions at \( \sqrt{s} \) = 13 TeV using events containing two leptons, JHEP 02 (2019) 149 [arXiv:1811.06625] [INSPIRE].

  132. ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, JHEP 11 (2017) 191 [arXiv:1708.00727] [INSPIRE].

  133. ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the eμ channel in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 292 [arXiv:1612.05220] [INSPIRE].

  134. ATLAS collaboration, Measurements of \( t\overline{t} \) differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Phys. Rev. D 98 (2018) 012003 [arXiv:1801.02052] [INSPIRE].

  135. M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].

    Article  ADS  Google Scholar 

  136. M. Czakon et al., Resummation for (boosted) top-quark pair production at NNLO+NNLL’ in QCD, JHEP 05 (2018) 149 [arXiv:1803.07623] [INSPIRE].

    Article  ADS  Google Scholar 

  137. ATLAS collaboration, Combination of the ATLAS and CMS measurements of the W-boson polarization in top-quark decays, ATLAS-CONF-2013-033.

  138. CMS collaboration, Measurements of \( t\overline{t} \) spin correlations and top quark polarization using dilepton final states in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. D 93 (2016) 052007 [arXiv:1601.01107] [INSPIRE].

  139. ATLAS collaboration, Measurements of top-quark pair spin correlations in the eμ channel at \( \sqrt{s} \) = 13 TeV using pp collisions in the ATLAS detector, ATLAS-CONF-2018-027.

  140. ATLAS collaboration, Measurement of the \( t\overline{t}\gamma \) production cross section in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2017) 086 [arXiv:1706.03046] [INSPIRE].

  141. ATLAS collaboration, Observation of top-quark pair production in association with a photon and measurement of the \( t\overline{t}\gamma \) production cross section in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Phys. Rev. D 91 (2015) 072007 [arXiv:1502.00586] [INSPIRE].

  142. CMS collaboration, Measurement of the semileptonic \( \mathrm{t}\overline{\mathrm{t}} \) + γ production cross section in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 10 (2017) 006 [arXiv:1706.08128] [INSPIRE].

  143. CMS collaboration, Measurement of \( \mathrm{t}\overline{\mathrm{t}} \) production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 76 (2016) 379 [arXiv:1510.03072] [INSPIRE].

  144. C. Englert, M. Russell and C.D. White, Effective Field Theory in the top sector: do multijets help?, Phys. Rev. D 99 (2019) 035019 [arXiv:1809.09744] [INSPIRE].

    ADS  Google Scholar 

  145. ATLAS collaboration, Measurements of fiducial and differential cross-sections of \( t\overline{t} \) production with additional heavy-flavour jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2018-029.

  146. ATLAS collaboration, Measurements of fiducial cross-sections for \( t\overline{t} \) production with one or two additional b-jets in pp collisions at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 11 [arXiv:1508.06868] [INSPIRE].

  147. CMS collaboration, Search for Standard Model Production of Four Top Quarks in the Lepton + Jets Channel in pp Collisions at \( \sqrt{s} \) = 8 TeV, JHEP 11 (2014) 154 [arXiv:1409.7339] [INSPIRE].

  148. CMS collaboration, Search for standard model production of four top quarks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 772 (2017) 336 [arXiv:1702.06164] [INSPIRE].

  149. ATLAS collaboration, Search for four-top-quark production in final states with one charged lepton and multiple jets using 3.2 fb −1 of proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-020.

  150. ATLAS collaboration, Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 052009 [arXiv:1811.02305] [INSPIRE].

  151. A. Giammanco, Single top quark production at the LHC, Rev. Phys. 1 (2016) 1 [arXiv:1511.06748] [INSPIRE].

    Article  Google Scholar 

  152. E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD Corrections to t-channel Single Top-Quark Production and Decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].

    ADS  Google Scholar 

  153. ATLAS collaboration, Measurement of differential cross-sections of a single top quark produced in association with a W boson at \( \sqrt{s} \) = 13 TeV with ATLAS, Eur. Phys. J. C 78 (2018) 186 [arXiv:1712.01602] [INSPIRE].

  154. CMS collaboration, Evidence for associated production of a single top quark and W boson in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 110 (2013) 022003 [arXiv:1209.3489] [INSPIRE].

  155. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].

    Article  ADS  Google Scholar 

  156. F. Demartin, B. Maier, F. Maltoni, K. Mawatari and M. Zaro, tWH associated production at the LHC, Eur. Phys. J. C 77 (2017) 34 [arXiv:1607.05862] [INSPIRE].

    Article  ADS  Google Scholar 

  157. CMS collaboration, Observation of single top quark production in association with a Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, submitted to Phys. Rev. Lett. (2018) [arXiv:1812.05900] [INSPIRE].

  158. R.D. Ball and A. Deshpande, The proton spin, semi-inclusive processes and measurements at a future Electron Ion Collider, in From My Vast Repertoire…: Guido Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi eds., pp. 205–226 (2019) [https://doi.org/10.1142/9789813238053_0011] [arXiv:1801.04842] [INSPIRE].

  159. NNPDF collaboration, Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].

  160. G. D’Agostini, Bayesian reasoning in data analysis: A critical introduction, World Scientific (2003) [INSPIRE].

  161. R. Boughezal, A. Guffanti, F. Petriello and M. Ubiali, The impact of the LHC Z-boson transverse momentum data on PDF determinations, JHEP 07 (2017) 130 [arXiv:1705.00343] [INSPIRE].

    Article  ADS  Google Scholar 

  162. J. Rojo, Constraints on parton distributions and the strong coupling from LHC jet data, Int. J. Mod. Phys. A 30 (2015) 1546005 [arXiv:1410.7728] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  163. J.M. Campbell, J. Rojo, E. Slade and C. Williams, Direct photon production and PDF fits reloaded, Eur. Phys. J. C 78 (2018) 470 [arXiv:1802.03021] [INSPIRE].

    Article  ADS  Google Scholar 

  164. D. Kraft, A software package for sequential quadratic programming, DFVLR, Köln (1988).

    MATH  Google Scholar 

  165. M. Farina, C. Mondino, D. Pappadopulo and J.T. Ruderman, New Physics from High Energy Tops, JHEP 01 (2019) 231 [arXiv:1811.04084] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Vrije Universiteit Amsterdam, NL-1081 HV, Amsterdam, The Netherlands

    Nathan P. Hartland & Juan Rojo

  2. Nikhef Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Nathan P. Hartland, Emanuele R. Nocera & Juan Rojo

  3. Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium

    Fabio Maltoni

  4. Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Sezione di Bologna, via Irnerio 46, 40126, Bologna, Italy

    Fabio Maltoni

  5. The Higgs Centre for Theoretical Physics, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh, EH9 3FD, Scotland

    Emanuele R. Nocera

  6. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom

    Emma Slade

  7. Theoretical Physics Department, CERN, CH-1211, Geneva, Switzerland

    Eleni Vryonidou

  8. Institute of High Energy Physics, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

    Cen Zhang

Authors
  1. Nathan P. Hartland
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fabio Maltoni
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Emanuele R. Nocera
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Juan Rojo
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Emma Slade
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Eleni Vryonidou
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Cen Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Cen Zhang.

Additional information

ArXiv ePrint: 1901.05965

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartland, N.P., Maltoni, F., Nocera, E.R. et al. A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector. J. High Energ. Phys. 2019, 100 (2019). https://doi.org/10.1007/JHEP04(2019)100

Download citation

  • Received: 25 January 2019

  • Revised: 01 April 2019

  • Accepted: 01 April 2019

  • Published: 15 April 2019

  • DOI: https://doi.org/10.1007/JHEP04(2019)100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Perturbative QCD
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature