Instability of a magnetized QGP sourced by a scalar operator

  • Daniel ÁvilaEmail author
  • Leonardo Patiño
Open Access
Regular Article - Theoretical Physics


We use the gauge/gravity correspondence to study the thermodynamics of a magnetized quark-gluon plasma in the presence of a scalar operator of dimension Δ = 2. We proceed by working in a five-dimensional gauged supergravity theory, where we numerically construct an asymptotically AdS5 background that describes a black D3-brane in the presence of a magnetic and a scalar fields. We study the asymptotic behavior of the background and its fields close to the AdS5 region to latter perform a thermodynamic analysis of the solution that includes the renormalization of the free energy associated to it. We find that because of the presence of the scalar operator, there exists a maximum intensity for the magnetic field that the plasma can hold, while for any given intensity smaller than that value, there are two states that differ in their vacuum expectation value for the scalar operator. We show that one of the two branches just mentioned is thermodynamically favored over the other.


AdS-CFT Correspondence Holography and quark-gluon plasmas 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].
  4. [4]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].
  7. [7]
    E. Uriel and L. Patiño, Holographic implications of a magnetic brane lift to ten dimensions, to appear.Google Scholar
  8. [8]
    D. Ávila and L. Patiño, Introducing holographic flavor in an intensely magnetized quark-gluon plasma, arXiv:1901.05976 [INSPIRE].
  9. [9]
    V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Arciniega, P. Ortega and L. Patiño, Brighter branes, enhancement of photon production by strong magnetic fields in the gauge/gravity correspondence, JHEP 04 (2014) 192 [arXiv:1307.1153] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Areán, L.A. Pando Zayas, L. Patiño and M. Villasante, Velocity statistics in holographic fluids: magnetized quark-gluon plasma and superfluid flow, JHEP 10 (2016) 158 [arXiv:1606.03068] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Avila, V. Jahnke and L. Patiño, Chaos, diffusivity and spreading of entanglement in magnetic branes and the strengthening of the internal interaction, JHEP 09 (2018) 131 [arXiv:1805.05351] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP 07 (2015) 116 [arXiv:1503.07148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G. Endrodi, M. Kaminski, A. Schafer, J. Wu and L. Yaffe, Universal magnetoresponse in QCD and \( \mathcal{N}=4 \) SYM, JHEP 09 (2018) 070 [arXiv:1806.09632] [INSPIRE].
  15. [15]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].
  16. [16]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    R.P. Martinez-y Romero, L. Patino and T. Ramirez-Urrutia, Increase of the energy necessary to probe ultraviolet theories due to the presence of a strong magnetic field, JHEP 11 (2017) 104 [arXiv:1703.03428] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    E. Banks and J.P. Gauntlett, A new phase for the anisotropic N = 4 super Yang-Mills plasma, JHEP 09 (2015) 126 [arXiv:1506.07176] [INSPIRE].
  21. [21]
    E. Banks, Phase transitions of an anisotropic N = 4 super Yang-Mills plasma via holography, JHEP 07 (2016) 085 [arXiv:1604.03552] [INSPIRE].
  22. [22]
    G.T. Horowitz, J.E. Santos and B. Way, Evidence for an electrifying violation of cosmic censorship, Class. Quant. Grav. 33 (2016) 195007 [arXiv:1604.06465] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Crisford, G.T. Horowitz and J.E. Santos, Attempts at vacuum counterexamples to cosmic censorship in AdS, JHEP 02 (2019) 092 [arXiv:1805.06469] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    T. Crisford and J.E. Santos, Violating the weak cosmic censorship conjecture in four-dimensional Anti-de Sitter space, Phys. Rev. Lett. 118 (2017) 181101 [arXiv:1702.05490] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Crisford, G.T. Horowitz and J.E. Santos, Testing the weak gravityCosmic censorship connection, Phys. Rev. D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE].
  26. [26]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
  27. [27]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].
  29. [29]
    A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].
  31. [31]
    D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Janiszewski and M. Kaminski, Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev. D 93 (2016) 025006 [arXiv:1508.06993] [INSPIRE].
  33. [33]
    R. Rougemont, R. Critelli and J. Noronha, Holographic calculation of the QCD crossover temperature in a magnetic field, Phys. Rev. D 93 (2016) 045013 [arXiv:1505.07894] [INSPIRE].
  34. [34]
    G. Basar, D. Kharzeev, D. Kharzeev and V. Skokov, Conformal anomaly as a source of soft photons in heavy ion collisions, Phys. Rev. Lett. 109 (2012) 202303 [arXiv:1206.1334] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    ALICE collaboration, Measurement of direct photons in pp and Pb-Pb collisions with ALICE, Nucl. Phys. A904-905 (2013) 573c [arXiv:1210.5958] [INSPIRE].
  36. [36]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations