Triangulation of 2-loop MHV amplituhedron from sign flips

  • Ryota KojimaEmail author
Open Access
Regular Article - Theoretical Physics


In this paper, we consider the triangulation of the 2-loop MHV amplituhedron from “sign flip” definition. Using the isomorphism between the m = 2, k = 2 tree amplituhedron and the 1-loop MHV physical amplituhedron, we found the direct triangulation of the 2-loop MHV amplituhedron from sign flips. This triangulation is different from the BCFW triangulation because of the structure of the cells. And we also found a formula of the canonical form of the n-point 2-loop MHV amplituhedron. This formula looks like a 2-loop version of the Kermit representation of the 1-loop MHV amplitude. We checked that the sum of these cells is consistent with the BCFW up to at least 22-pt numerically.


Scattering Amplitudes Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A Note on Polytopes for Scattering Amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016) [arXiv:1212.5605] [INSPIRE].
  4. [4]
    N. Arkani-Hamed, Y. Bai and T. Lam, Positive Geometries and Canonical Forms, JHEP 11 (2017) 039 [arXiv:1703.04541] [INSPIRE].
  5. [5]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].
  6. [6]
    N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the Amplituhedron in Binary, JHEP 01 (2018) 016 [arXiv:1704.05069] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    N. Arkani-Hamed, A. Hodges and J. Trnka, Positive Amplitudes In The Amplituhedron, JHEP 08 (2015) 030 [arXiv:1412.8478] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the Amplituhedron Volume, JHEP 03 (2016) 014 [arXiv:1512.04954] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    L. Ferro, T. Lukowski and M. Parisi, Amplituhedron meets Jeffrey-Kirwan residue, J. Phys. A 52 (2019) 045201 [arXiv:1805.01301] [INSPIRE].
  11. [11]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].
  12. [12]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Chang, C. Monstein, A. Refregier, A. Amara, A. Glauser and S. Casura, Beam calibration of radio telescopes with drones, Publ. Astron. Soc. Pac. 127 (2015) 1131 [arXiv:1505.05885] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Arkani-Hamed, C. Langer, A. Yelleshpur Srikant and J. Trnka, Deep Into the Amplituhedron: Amplitude Singularities at All Loops and Legs, Phys. Rev. Lett. 122 (2019) 051601 [arXiv:1810.08208] [INSPIRE].
  15. [15]
    S.N. Karp, L.K. Williams and Y.X. Zhang, Decompositions of amplituhedra, arXiv:1708.09525 [INSPIRE].
  16. [16]
    S.N. Karp and L.K. Williams, The m = 1 amplituhedron and cyclic hyperplane arrangements, arXiv:1608.08288 [INSPIRE].
  17. [17]
    P. Heslop and A. Stewart, The twistor Wilson loop and the amplituhedron, JHEP 10 (2018) 142 [arXiv:1807.05921] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Rao, 4-particle Amplituhedronics for 3-5 loops, arXiv:1806.01765 [INSPIRE].
  19. [19]
    P. Galashin and T. Lam, Parity duality for the amplituhedron, arXiv:1805.00600 [INSPIRE].
  20. [20]
    Y. An, Y. Li, Z. Li and J. Rao, All-loop Mondrian Diagrammatics and 4-particle Amplituhedron, JHEP 06 (2018) 023 [arXiv:1712.09994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Rao, 4-particle Amplituhedron at 3-loop and its Mondrian Diagrammatic Implication, JHEP 06 (2018) 038 [arXiv:1712.09990] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Galloni, Positivity Sectors and the Amplituhedron, arXiv:1601.02639 [INSPIRE].
  23. [23]
    S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the Amplituhedron, JHEP 03 (2015) 128 [arXiv:1408.3410] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Y. Bai and S. He, The Amplituhedron from Momentum Twistor Diagrams, JHEP 02 (2015) 065 [arXiv:1408.2459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Particle and Nuclear PhysicsSOKENDAI (The Graduate University for Advanced Studies)TsukubaJapan
  2. 2.KEK Theory CenterTsukubaJapan

Personalised recommendations