Advertisement

OPE selection rules for Schur multiplets in 4D \( \mathcal{N}=2 \) superconformal field theories

  • Kazuki KiyoshigeEmail author
  • Takahiro Nishinaka
Open Access
Regular Article - Theoretical Physics
  • 45 Downloads

Abstract

We compute general expressions for two types of three-point functions of (semi-)short multiplets in four-dimensional \( \mathcal{N}=2 \) superconformal field theories. These (semi-)short multiplets are called “Schur multiplets” and play an important role in the study of associated chiral algebras. The first type of the three-point functions we compute involves two half-BPS Schur multiplets and an arbitrary Schur multiplet, while the second type involves one stress tensor multiplet and two arbitrary Schur multiplets. From these three-point functions, we read off the corresponding OPE selection rules for the Schur multiplets. Our results particularly imply that there are non-trivial selection rules on the quantum numbers of Schur operators in these multiplets. We also give a conjecture on the selection rules for general Schur multiplets.

Keywords

Conformal Field Theory Extended Supersymmetry Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].
  2. [2]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].
  3. [3]
    T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].
  4. [4]
    K. Maruyoshi and J. Song, Enhancement of supersymmetry via renormalization group flow and the superconformal index, Phys. Rev. Lett. 118 (2017) 151602 [arXiv:1606.05632] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Maruyoshi and J. Song, \( \mathcal{N}=1 \) deformations and RG flows of \( \mathcal{N}=2 \) SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].
  6. [6]
    P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N}=1 \) deformations and RG flows of \( \mathcal{N}=2 \) SCFTs, part II: non-principal deformations, JHEP 12 (2016) 103 [arXiv:1610.05311] [INSPIRE].
  7. [7]
    K. Maruyoshi, E. Nardoni and J. Song, Landscape of simple superconformal field theories in 4d, Phys. Rev. Lett. 122 (2019) 121601 [arXiv:1806.08353] [INSPIRE].
  8. [8]
    P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N}=1 \) Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].
  9. [9]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE].
  10. [10]
    S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106 [arXiv:1707.05113] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Giacomelli, RG flows with supersymmetry enhancement and geometric engineering, JHEP 06 (2018) 156 [arXiv:1710.06469] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Giacomelli, Infrared enhancement of supersymmetry in four dimensions, JHEP 10 (2018) 041 [arXiv:1808.00592] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F. Carta, S. Giacomelli and R. Savelli, SUSY enhancement from T-branes, JHEP 12 (2018) 127 [arXiv:1809.04906] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].
  15. [15]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E n global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].
  16. [16]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
  17. [17]
    C. Beem et al., Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].
  18. [18]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].
  19. [19]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    P. Liendo, I. Ramirez and J. Seo, Stress-tensor OPE in N = 2 superconformal theories, JHEP 02 (2016) 019 [arXiv:1509.00033] [INSPIRE].
  21. [21]
    M. Lemos and P. Liendo, \( \mathcal{N}=2 \) central charge bounds from 2d chiral algebras, JHEP 04 (2016) 004 [arXiv:1511.07449] [INSPIRE].
  22. [22]
    C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP 05 (2015) 020 [arXiv:1408.6522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Lemos and W. Peelaers, Chiral algebras for trinion theories, JHEP 02 (2015) 113 [arXiv:1411.3252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=2 \) superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].
  25. [25]
    M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys. A 49 (2016) 015401 [arXiv:1505.05884] [INSPIRE].
  26. [26]
    C. Cordova and S.-H. Shao, Schur indices, BPS particles and Argyres-Douglas theories, JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Cecotti, J. Song, C. Vafa and W. Yan, Superconformal index, BPS monodromy and chiral algebras, JHEP 11 (2017) 013 [arXiv:1511.01516] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions, Commun. Math. Phys. 354 (2017) 345 [arXiv:1601.05378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    T. Nishinaka and Y. Tachikawa, On 4d rank-one \( \mathcal{N}=3 \) superconformal field theories, JHEP 09 (2016) 116 [arXiv:1602.01503] [INSPIRE].
  30. [30]
    M. Buican and T. Nishinaka, Conformal manifolds in four dimensions and chiral algebras, J. Phys. A 49 (2016) 465401 [arXiv:1603.00887] [INSPIRE].
  31. [31]
    D. Xie, W. Yan and S.-T. Yau, Chiral algebra of Argyres-Douglas theory from M 5 brane, arXiv:1604.02155 [INSPIRE].
  32. [32]
    C. Cordova, D. Gaiotto and S.-H. Shao, Infrared computations of defect Schur indices, JHEP 11 (2016) 106 [arXiv:1606.08429] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \( \mathcal{N}=3 \) superconformal theories, JHEP 04 (2017) 032 [arXiv:1612.01536] [INSPIRE].
  34. [34]
    C. Beem, L. Rastelli and B.C. van Rees, More \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. D 96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].
  35. [35]
    F. Bonetti and L. Rastelli, Supersymmetric localization in AdS 5 and the protected chiral algebra, JHEP 08 (2018) 098 [arXiv:1612.06514] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    J. Song, Macdonald index and chiral algebra, JHEP 08 (2017) 044 [arXiv:1612.08956] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    L. Fredrickson, D. Pei, W. Yan and K. Ye, Argyres-Douglas theories, chiral algebras and wild hitchin characters, JHEP 01 (2018) 150 [arXiv:1701.08782] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    C. Cordova, D. Gaiotto and S.-H. Shao, Surface defects and chiral algebras, JHEP 05 (2017) 140 [arXiv:1704.01955] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J. Song, D. Xie and W. Yan, Vertex operator algebras of Argyres-Douglas theories from M 5-branes, JHEP 12 (2017) 123 [arXiv:1706.01607] [INSPIRE].
  40. [40]
    M. Buican, Z. Laczko and T. Nishinaka, \( \mathcal{N}=2 \) S-duality revisited, JHEP 09 (2017) 087 [arXiv:1706.03797] [INSPIRE].
  41. [41]
    K. Ito and H. Shu, ODE/IM correspondence and the Argyres-Douglas theory, JHEP 08 (2017) 071 [arXiv:1707.03596] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches and modular differential equations, JHEP 08 (2018) 114 [arXiv:1707.07679] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Neitzke and F. Yan, Line defect Schur indices, Verlinde algebras and U(1)r fixed points, JHEP 11 (2017) 035 [arXiv:1708.05323] [INSPIRE].
  44. [44]
    Y. Pan and W. Peelaers, Chiral algebras, localization and surface defects, JHEP 02 (2018) 138 [arXiv:1710.04306] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Fluder and J. Song, Four-dimensional lens space index from two-dimensional chiral algebra, JHEP 07 (2018) 073 [arXiv:1710.06029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    J. Choi and T. Nishinaka, On the chiral algebra of Argyres-Douglas theories and S-duality, JHEP 04 (2018) 004 [arXiv:1711.07941] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Buican and Z. Laczko, Nonunitary Lagrangians and unitary non-Lagrangian conformal field theories, Phys. Rev. Lett. 120 (2018) 081601 [arXiv:1711.09949] [INSPIRE].
  48. [48]
    K. Ito and H. Shu, Massive ODE/IM correspondence and non-linear integral equations for \( {A}_r^{{}^{(1)}} \) -type modified affine Toda field equations, J. Phys. A 51 (2018) 385401 [arXiv:1805.08062] [INSPIRE].
  49. [49]
    Y. Wang and D. Xie, Codimension-two defects and Argyres-Douglas theories from outer-automorphism twist in 6d (2, 0) theories, arXiv:1805.08839 [INSPIRE].
  50. [50]
    T. Nishinaka, S. Sasa and R.-D. Zhu, On the correspondence between surface operators in Argyres-Douglas theories and modules of chiral algebra, JHEP 03 (2019) 091 [arXiv:1811.11772] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    I.A. Ramírez, Mixed OPEs in \( \mathcal{N}=2 \) superconformal theories, JHEP 05 (2016) 043 [arXiv:1602.07269] [INSPIRE].
  52. [52]
    S.M. Kuzenko and S. Theisen, Correlation functions of conserved currents in N = 2 superconformal theory, Class. Quant. Grav. 17 (2000) 665 [hep-th/9907107] [INSPIRE].
  53. [53]
    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].
  54. [54]
    H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Annals Phys. 272 (1999) 243 [hep-th/9808041] [INSPIRE].
  55. [55]
    J.-H. Park, Superconformal symmetry and correlation functions, Nucl. Phys. B 559 (1999) 455 [hep-th/9903230] [INSPIRE].
  56. [56]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].
  58. [58]
    V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d = 4, arXiv:1307.8092[INSPIRE].
  59. [59]
    V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d>3 dimensions, JHEP 03 (2016) 044 [arXiv:1510.02535] [INSPIRE].
  60. [60]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  61. [61]
    G. Arutyunov, B. Eden and E. Sokatchev, On nonrenormalization and OPE in superconformal field theories, Nucl. Phys. B 619 (2001) 359 [hep-th/0105254] [INSPIRE].
  62. [62]
    J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in superconformal theories, JHEP 09 (2011) 071 [arXiv:1107.1721] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    P. Agarwal, S. Lee and J. Song, Vanishing OPE coefficients in 4d N = 2 SCFTs, arXiv:1812.04743 [INSPIRE].
  64. [64]
    F. Bonetti, C. Meneghelli and L. Rastelli, VOAs labelled by complex reflection groups and 4d SCFTs, arXiv:1810.03612 [INSPIRE].
  65. [65]

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceOsaka City UniversitySumiyoshiJapan
  2. 2.Department of Physical Sciences, College of Science and EngineeringRitsumeikan UniversityShigaJapan

Personalised recommendations