Advertisement

Gravity duals of \( \mathcal{N}=\left(0,\ 2\right) \) SCFTs from M5-branes

  • Ibrahima BahEmail author
  • Vasilis Stylianou
Open Access
Regular Article - Theoretical Physics
  • 44 Downloads

Abstract

We describe the general BPS system that governs the gravity duals of \( \mathcal{N}=\left(0,\ 2\right) \) two-dimensional superconformal field theories in the low-energy limit of M5-branes on a four-manifold, M4. In order to preserve supersymmetry, we restrict to cases where the four-manifold is embedded in a Calabi-Yau fourfold that is a sum of two line bundles over M4. We further reduce the \( \mathcal{N}=\left(0,\ 2\right) \) system to describe the gravity duals of SCFTs with \( \mathcal{N}=\left(0,4\right) \) and \( \mathcal{N}=\left(2,2\right) \) supersymmetry. In the first case, the solutions fit in the larger class of AdS3 ×S2 × CY3 solutions of M-theory dual to \( \mathcal{N}=\left(0,4\right) \) SCFTs. In the case of the \( \mathcal{N}=\left(2,2\right) \) theories, the near-horizon limit of M4 is necessarily a product of two constant curvature Riemann surfaces whose metrics are governed by a pair of Liouville equations.

Keywords

AdS-CFT Correspondence M-Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, New supersymmetric AdS 3 solutions, Phys. Rev. D 74 (2006) 106007 [hep-th/0608055] [INSPIRE].
  2. [2]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
  3. [3]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  4. [4]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].
  5. [5]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].
  6. [6]
    I. Bah, Quarter-BPS AdS 5 solutions in M-theory with a T 2 bundle over a Riemann surface, JHEP 08 (2013) 137 [arXiv:1304.4954] [INSPIRE].
  7. [7]
    I. Bah, AdS 5 solutions from M5-branes on Riemann surface and D6-branes sources, JHEP 09 (2015) 163 [arXiv:1501.06072] [INSPIRE].
  8. [8]
    J.P. Gauntlett, N. Kim and D. Waldram, M5-branes wrapped on supersymmetric cycles, Phys. Rev. D 63 (2001) 126001 [hep-th/0012195] [INSPIRE].
  9. [9]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
  11. [11]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].
  12. [12]
    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].
  13. [13]
    Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdS 3 backgrounds, JHEP 05 (2015) 062 [arXiv:1503.07527] [INSPIRE].
  14. [14]
    Y. Lozano, N.T. Macpherson, J. Montero and E. Ó. Colgáin, New AdS 3 × S2 T-duals with N = (0,4) supersymmetry, JHEP 08 (2015) 121[arXiv:1507.02659] [INSPIRE].
  15. [15]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS D−2 × S 2AdS D, Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].
  16. [16]
    A. Donos and J.P. Gauntlett, Flowing from AdS 5 to AdS 3 with T 1,1, JHEP 08 (2014) 006 [arXiv:1404.7133] [INSPIRE].
  17. [17]
    N. Bobev, K. Pilch and O. Vasilakis, (0, 2) SCFTs from the Leigh-Strassler fixed point, JHEP 06 (2014) 094 [arXiv:1403.7131] [INSPIRE].
  18. [18]
    M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE].
  19. [19]
    P. Karndumri and E. Ó Colgáin, Supergravity dual of c-extremization, Phys. Rev. D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE].
  20. [20]
    J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, AdS spacetimes from wrapped M5 branes, JHEP 11 (2006) 053 [hep-th/0605146] [INSPIRE].
  21. [21]
    H. Kim, K.K. Kim and N. Kim, 1/4-BPS M-theory bubbles with SO(3) × SO(4) symmetry, JHEP 08 (2007) 050 [arXiv:0706.2042] [INSPIRE].
  22. [22]
    E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].
  23. [23]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].
  24. [24]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
  25. [25]
    O.A.P. Mac Conamhna, Eight-manifolds with G-structure in eleven dimensional supergravity, Phys. Rev. D 72 (2005) 086007 [hep-th/0504028] [INSPIRE].
  26. [26]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    N. Kim, The backreacted Kähler geometry of wrapped branes, Phys. Rev. D 86 (2012) 067901 [arXiv:1206.1536] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesU.S.A.

Personalised recommendations