Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
High U(1) charges in type IIB models and their F-theory lift
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Small Landau-Ginzburg theories

23 April 2019

Sean M. Gholson & Ilarion V. Melnikov

The frozen phase of F-theory

22 August 2018

Lakshya Bhardwaj, David R. Morrison, … Alessandro Tomasiello

Yukawa hierarchies in global F-theory models

08 January 2020

Mirjam Cvetič, Ling Lin, … Gianluca Zoccarato

Orders of vanishing and U(1) charges in F-theory

08 March 2022

Nikhil Raghuram & Andrew P. Turner

General F-theory models with tuned (SU(3) × SU(2) × U(1))/ℤ6 symmetry

01 April 2020

Nikhil Raghuram, Washington Taylor & Andrew P. Turner

6d N $$ \mathcal{N} $$ = (1, 0) anomalies on S1 and F-theory implications

26 August 2020

Pierre Corvilain

Towards exotic matter and discrete non-abelian symmetries in F-theory

05 November 2018

Mirjam Cvetič, Jonathan J. Heckman & Ling Lin

Large U(1) charges in F-theory

29 October 2018

Nikhil Raghuram & Washington Taylor

The duality between F-theory and the heterotic string in $$D=8$$ D = 8 with two Wilson lines

07 August 2020

Adrian Clingher, Thomas Hill & Andreas Malmendier

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 01 April 2019

High U(1) charges in type IIB models and their F-theory lift

  • Francesco Mattia Cianci1,
  • Damián K. Mayorga Peña2 &
  • Roberto Valandro  ORCID: orcid.org/0000-0003-2958-388X1,3,4 

Journal of High Energy Physics volume 2019, Article number: 12 (2019) Cite this article

  • 232 Accesses

  • 16 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We construct models with U(1) gauge group and matter with charges up to 6, in the context of type IIB compactifications. We show explicitly that models with charges up to 4 can be derived from corresponding models in F-theory by applying the Sen weak coupling limit. We derive which type IIB models should be the limit of charge 5 and 6 F-theory models. Explicit six dimensional type IIB models with maximal charge 5 and 6 are constructed on an algebraic K3 surface that is the double cover of ℂℙ2. By using type IIB results we are also able to rediscover the F-theory charge 4 model in a straightforward way.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

  2. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].

  3. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

  4. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

  5. R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Halverson, C. Long and B. Sung, Algorithmic universality in F-theory compactifications, Phys. Rev. D 96 (2017) 126006 [arXiv:1706.02299] [INSPIRE].

  7. W. Taylor and Y.-N. Wang, Scanning the skeleton of the 4D F-theory landscape, JHEP 01 (2018) 111 [arXiv:1710.11235] [INSPIRE].

  8. V. Braun, T.W. Grimm and J. Keitel, Complete intersection fibers in F-theory, JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Kimura, F-theory models on K3 surfaces with various Mordell-Weil ranks — Constructions that use quadratic base change of rational elliptic surfaces, JHEP 05 (2018) 048 [arXiv:1802.05195] [INSPIRE].

  10. T.W. Grimm and T. Weigand, On abelian gauge symmetries and proton decay in global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].

  11. M. Cvetič, T.W. Grimm and D. Klevers, Anomaly cancellation and abelian gauge symmetries in F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].

  13. M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].

  14. M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].

  15. L.B. Anderson, I. García-Etxebarria, T.W. Grimm and J. Keitel, Physics of F-theory compactifications without section, JHEP 12 (2014) 156 [arXiv:1406.5180] [INSPIRE].

  16. D. Klevers et al., F-theory on all toric hypersurface fibrations and its Higgs branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete gauge symmetries by higgsing in four-dimensional F-theory compactifications, JHEP 12 (2014) 068 [arXiv:1408.6831] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L. Lin, C. Mayrhofer, O. Till and T. Weigand, Fluxes in F-theory compactifications on genus-one fibrations, JHEP 01 (2016) 098 [arXiv:1508.00162] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Cvetič, A. Grassi and M. Poretschkin, Discrete symmetries in heterotic/F-theory duality and mirror symmetry, JHEP 06 (2017) 156 [arXiv:1607.03176] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. Kumar and W. Taylor, String universality in six dimensions, Adv. Theor. Math. Phys. 15 (2011) 325 [arXiv:0906.0987] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Kumar and W. Taylor, A bound on 6D N = 1 supergravities, JHEP 12 (2009) 050 [arXiv:0910.1586] [INSPIRE].

  22. V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D N = 1 supergravities to F-theory, JHEP 02 (2010) 099 [arXiv:0911.3393] [INSPIRE].

  23. V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].

  24. V. Kumar, D.S. Park and W. Taylor, 6D supergravity without tensor multiplets, JHEP 04 (2011) 080 [arXiv:1011.0726] [INSPIRE].

  25. N. Seiberg and W. Taylor, Charge lattices and consistency of 6D supergravity, JHEP 06 (2011) 001 [arXiv:1103.0019] [INSPIRE].

  26. S. Monnier, G.W. Moore and D.S. Park, Quantization of anomaly coefficients in 6D \( \mathcal{N}=\left(1,0\right) \) supergravity, JHEP 02 (2018) 020 [arXiv:1711.04777] [INSPIRE].

  27. W. Taylor and A.P. Turner, An infinite swampland of U(1) charge spectra in 6D supergravity theories, JHEP 06 (2018) 010 [arXiv:1803.04447] [INSPIRE].

  28. A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  29. L.B. Anderson, J. Gray, N. Raghuram and W. Taylor, Matter in transition, JHEP 04 (2016) 080 [arXiv:1512.05791] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. D. Klevers, D.R. Morrison, N. Raghuram and W. Taylor, Exotic matter on singular divisors in F-theory, JHEP 11 (2017) 124 [arXiv:1706.08194] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Cvetič, J.J. Heckman and L. Lin, Towards exotic matter and discrete non-Abelian symmetries in F-theory, JHEP 11 (2018) 001 [arXiv:1806.10594] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. D.S. Park and W. Taylor, Constraints on 6D supergravity theories with abelian gauge symmetry, JHEP 01 (2012) 141 [arXiv:1110.5916] [INSPIRE].

  33. N. Raghuram and W. Taylor, Large U(1) charges in F-theory, JHEP 10 (2018) 182 [arXiv:1809.01666] [INSPIRE].

  34. N. Raghuram, Abelian F-theory models with charge-3 and charge-4 matter, JHEP 05 (2018) 050 [arXiv:1711.03210] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) R7345 [hep-th/9702165] [INSPIRE].

  36. D.K. Mayorga Pena and R. Valandro, Weak coupling limit of F-theory models with MSSM spectrum and massless U(1)’s, JHEP 03 (2018) 107 [arXiv:1708.09452] [INSPIRE].

  37. R.L.E. Schwarzenberger, Vector bundles on algebraic surfaces, Proc. London Math. Soc. 11 (1961) 601.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer, Germany (1998).

  39. S. Krause, C. Mayrhofer and T. Weigand, Gauge fluxes in F-theory and type IIB orientifolds, JHEP 08 (2012) 119 [arXiv:1202.3138] [INSPIRE].

  40. A. Collinucci and R. Savelli, On flux quantization in F-theory II: unitary and symplectic gauge groups, JHEP 08 (2012) 094 [arXiv:1203.4542] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A.P. Braun, A. Collinucci and R. Valandro, The fate of U(1)’s at strong coupling in F-theory, JHEP 07 (2014) 028 [arXiv:1402.4054] [INSPIRE].

  42. A. Collinucci and I. García-Etxebarria, E6 Yukawa couplings in F-theory as D-brane instanton effects, JHEP 03 (2017) 155 [arXiv:1612.06874] [INSPIRE].

  43. H. Jockers and W. Lerche, Matrix factorizations, D-branes and their deformations, Nucl. Phys. Proc. Suppl. 171 (2007) 196 [arXiv:0708.0157] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. A.P. Braun, A. Collinucci and R. Valandro, G-flux in F-theory and algebraic cycles, Nucl. Phys. B 856 (2012) 129 [arXiv:1107.5337] [INSPIRE].

  45. A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. Collinucci, M. Fazzi and R. Valandro, Geometric engineering on flops of length two, JHEP 04 (2018) 090 [arXiv:1802.00813].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  49. M. Esole and R. Savelli, Tate form and weak coupling limits in F-theory, JHEP 06 (2013) 027 [arXiv:1209.1633] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)’s in type-I and type IIB D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].

  51. E. Poppitz, On the one loop Fayet-Iliopoulos term in chiral four-dimensional type-I orbifolds, Nucl. Phys. B 542 (1999) 31 [hep-th/9810010] [INSPIRE].

  52. G. Aldazabal et al., D = 4 chiral string compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103 [hep-th/0011073] [INSPIRE].

  53. E. Plauschinn, The generalized Green-Schwarz mechanism for type IIB orientifolds with D3- and D7-branes, JHEP 05 (2009) 062 [arXiv:0811.2804] [INSPIRE].

  54. T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, On fluxed instantons and moduli stabilisation in IIB orientifolds and F-theory, Phys. Rev. D 84 (2011) 066001 [arXiv:1105.3193] [INSPIRE].

  55. T.W. Grimm, M. Kerstan, E. Palti and T. Weigand, Massive abelian gauge symmetries and fluxes in F-theory, JHEP 12 (2011) 004 [arXiv:1107.3842] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. A.P. Braun, A. Collinucci and R. Valandro, Hypercharge flux in F-theory and the stable Sen limit, JHEP 07 (2014) 121 [arXiv:1402.4096] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].

  58. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  59. A.P. Braun, S. Gerigk, A. Hebecker and H. Triendl, D7-brane moduli vs. F-theory cycles in elliptically fibred threefolds, Nucl. Phys. B 836 (2010) 1 [arXiv:0912.1596] [INSPIRE].

  60. V.V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, in the proceedings of the International Congress of Mathematicians (ICM 1986), August 3-11, Berkeley, U.S.A. (1986).

  61. A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. A.P. Braun, A. Hebecker and H. Triendl, D7-brane motion from M-theory cycles and obstructions in the weak coupling limit, Nucl. Phys. B 800 (2008) 298 [arXiv:0801.2163] [INSPIRE].

  63. M. Cvetič, D. Klevers, H. Piragua and W. Taylor, General U(1) × U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure, JHEP 11 (2015) 204 [arXiv:1507.05954] [INSPIRE].

  64. Y. Kimura, Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section, JHEP 04 (2017) 168 [arXiv:1608.07219] [INSPIRE].

  65. D.S. Park, Anomaly equations and intersection theory, JHEP 01 (2012) 093 [arXiv:1111.2351] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Dipartimento di Fisica, Università degli Studi di Trieste, Strada Costiera 11, 34151, Trieste, Italy

    Francesco Mattia Cianci & Roberto Valandro

  2. Departamento de Física, DCI, Universidad de Guanajuato, Loma del Bosque 103, CP 37150, León, Guanajuato, México

    Damián K. Mayorga Peña

  3. The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy

    Roberto Valandro

  4. INFN — Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy

    Roberto Valandro

Authors
  1. Francesco Mattia Cianci
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Damián K. Mayorga Peña
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Roberto Valandro
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Damián K. Mayorga Peña.

Additional information

ArXiv ePrint: 1811.11777

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cianci, F.M., Mayorga Peña, D.K. & Valandro, R. High U(1) charges in type IIB models and their F-theory lift. J. High Energ. Phys. 2019, 12 (2019). https://doi.org/10.1007/JHEP04(2019)012

Download citation

  • Received: 08 December 2018

  • Accepted: 22 March 2019

  • Published: 01 April 2019

  • DOI: https://doi.org/10.1007/JHEP04(2019)012

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anomalies in Field and String Theories
  • D-branes
  • Field Theories in Higher Dimensions
  • Superstring Vacua
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.