Skip to main content

Partially massless fields during inflation

A preprint version of the article is available at arXiv.

Abstract

The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.

References

  1. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

  2. Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].

  3. Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].

  4. M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, in Unity from duality: gravity, gauge theory and strings. Proceedings, NATO Advanced Study Institute, Euro Summer School, 76th session, Les Houches France, 30 July-31 August 2001, pg. 423 [hep-th/0110007] [INSPIRE].

  5. D. Anninos, De Sitter musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. E.T. Akhmedov, Lecture notes on interacting quantum fields in de Sitter space, Int. J. Mod. Phys. D 23 (2014) 1430001 [arXiv:1309.2557] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. V. Bargmann and E.P. Wigner, Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci. 34 (1948) 211 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals Math. 40 (1939)149 [Nucl. Phys. Proc. Suppl. B 6 (1989) 9] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. S. Deser and A. Waldron, Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity, Nucl. Phys. B 662 (2003) 379 [hep-th/0301068] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. T. Newton, A note on the representations of the de Sitter group, Ann. Math. 51 (1950) 730.

    MathSciNet  Article  Google Scholar 

  11. L. Thomas, On unitary representations of the group of de Sitter space, Ann. Math. 42 (1941) 113.

    MathSciNet  Article  Google Scholar 

  12. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

  13. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

  14. X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. K.B. Alkalaev, On higher spin extension of the Jackiw-Teitelboim gravity model, J. Phys. A 47 (2014)365401 [arXiv:1311.5119] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  16. K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov, Uniformizing higher-spin equations, J. Phys. A 48 (2015) 015401 [arXiv:1409.6507] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP 01 (2016) 003 [arXiv:1508.07332] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. C. Brust and K. Hinterbichler, Partially massless higher-spin theory, JHEP 02 (2017) 086 [arXiv:1610.08510] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

  20. P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].

  21. X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

  22. X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    ADS  Article  Google Scholar 

  23. T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].

  25. M. Mirbabayi and M. Simonović, Effective theory of squeezed correlation functions, JCAP 03 (2016) 056 [arXiv:1507.04755] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP 02 (2016)013 [arXiv:1509.03930] [INSPIRE].

  27. H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP 12 (2016)040 [arXiv:1607.03735] [INSPIRE].

  28. A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys. B 282 (1987) 397 [INSPIRE].

  29. S. Deser and A. Waldron, Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations, Phys. Lett. B 513 (2001) 137 [hep-th/0105181] [INSPIRE].

    ADS  Article  Google Scholar 

  30. Yu. M. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].

  31. L. Bordin, P. Creminelli, A. Khmelnitsky, M. Mirbabayi and L. Senatore, Spinning cosmology, work in progress.

  32. A. Kehagias and A. Riotto, On the inflationary perturbations of massive higher-spin fields, JCAP 07 (2017) 046 [arXiv:1705.05834] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. S. Endlich, A. Nicolis and J. Wang, Solid inflation, JCAP 10 (2013) 011 [arXiv:1210.0569] [INSPIRE].

  34. F. Piazza, D. Pirtskhalava, R. Rattazzi and O. Simon, Gaugid inflation, JCAP 11 (2017) 041 [arXiv:1706.03402] [INSPIRE].

  35. M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. B. de Wit, Supergravity, in Unity from duality: gravity, gauge theory and strings. Proceedings, NATO Advanced Study Institute, Euro Summer School, 76th session, Les Houches France, 30 July-31 August 2001, pg. 1 [hep-th/0212245] [INSPIRE].

  37. S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87 (2001) 031601 [hep-th/0102166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001)577 [hep-th/0103198] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. L. Bernard, C. Deffayet, K. Hinterbichler and M. von Strauss, Partially massless graviton on beyond Einstein spacetimes, Phys. Rev. D 95 (2017) 124036 [arXiv:1703.02538] [INSPIRE].

  40. R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell and Y. Yin, FRW and domain walls in higher spin gravity, JHEP 03 (2018) 153 [arXiv:1712.02401] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. I. Cortese and M. Kulaxizi, General backgrounds for higher spin massive particles, arXiv:1711.11535 [INSPIRE].

  42. X. Bekaert, M. Grigoriev and E.D. Skvortsov, Higher spin extension of Fefferman-Graham construction, Universe 4 (2018) 17 [arXiv:1710.11463] [INSPIRE].

    ADS  Article  Google Scholar 

  43. S. Weinberg, Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. S.R. Coleman and J. Mandula, All possible symmetries of the S-matrix, Phys. Rev. 159 (1967)1251 [INSPIRE].

    ADS  Article  Google Scholar 

  45. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].

    ADS  Article  Google Scholar 

  47. R. Rahman and M. Taronna, From higher spins to strings: a primer, arXiv:1512.07932 [INSPIRE].

  48. M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].

  49. S. Giombi, Higher spin-CFT duality, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder CO U.S.A., 1-26 June 2015, World Scientific, Singapore, (2017), pg. 137 [arXiv:1607.02967] [INSPIRE].

  50. D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

  51. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model mass spectrum in inflationary universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, arXiv:1711.03988 [INSPIRE].

  53. E. Sefusatti, J.R. Fergusson, X. Chen and E.P.S. Shellard, Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background, JCAP 08 (2012) 033 [arXiv:1204.6318] [INSPIRE].

    ADS  Article  Google Scholar 

  54. P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for cosmological collider physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

    ADS  Article  Google Scholar 

  55. J. Gleyzes, R. de Putter, D. Green and O. Dorè, Biasing and the search for primordial non-Gaussianity beyond the local type, JCAP 04 (2017) 002 [arXiv:1612.06366] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. A. Moradinezhad Dizgah and C. Dvorkin, Scale-dependent galaxy bias from massive particles with spin during inflation, JCAP 01 (2018) 010 [arXiv:1708.06473] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. A. Moradinezhad Dizgah, H. Lee, J.B. Muñoz and C. Dvorkin, Galaxy bispectrum from massive spinning particles, arXiv:1801.07265 [INSPIRE].

  58. C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space, Phys. Rev. D 20 (1979)848 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  59. R.R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP 01 (2012)064 [arXiv:0707.4437] [INSPIRE].

  60. J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].

  61. R.R. Metsaev, Arbitrary spin conformal fields in (A)dS, Nucl. Phys. B 885 (2014) 734 [arXiv:1404.3712] [INSPIRE].

  62. S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. R.M. Wald, Spin-2 fields and general covariance, Phys. Rev. D 33 (1986) 3613 [INSPIRE].

  64. E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in (A)dS, JHEP 07 (2012) 041 [arXiv:1203.6578] [INSPIRE].

  65. E. Joung, L. Lopez and M. Taronna, Generating functions of (partially-)massless higher-spin cubic interactions, JHEP 01 (2013) 168 [arXiv:1211.5912] [INSPIRE].

    ADS  Article  Google Scholar 

  66. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  67. P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  69. P. Creminelli, J. Noreña and M. Simonović, Conformal consistency relations for single-field inflation, JCAP 07 (2012) 052 [arXiv:1203.4595] [INSPIRE].

    ADS  Article  Google Scholar 

  70. P. Creminelli, A. Perko, L. Senatore, M. Simonović and G. Trevisan, The physical squeezed limit: consistency relations at order q 2, JCAP 11 (2013) 015 [arXiv:1307.0503] [INSPIRE].

  71. E. Pajer, F. Schmidt and M. Zaldarriaga, The observed squeezed limit of cosmological three-point functions, Phys. Rev. D 88 (2013) 083502 [arXiv:1305.0824] [INSPIRE].

  72. K. Hinterbichler, L. Hui and J. Khoury, An infinite set of Ward identities for adiabatic modes in cosmology, JCAP 01 (2014) 039 [arXiv:1304.5527] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, Tensor squeezed limits and the Higuchi bound, JCAP 09 (2016) 041 [arXiv:1605.08424] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

    ADS  Article  Google Scholar 

  75. A. Kehagias and A. Riotto, Operator product expansion of inflationary correlators and conformal symmetry of de Sitter, Nucl. Phys. B 864 (2012) 492 [arXiv:1205.1523] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. A. Kehagias and A. Riotto, The four-point correlator in multifield inflation, the operator product expansion and the symmetries of de Sitter, Nucl. Phys. B 868 (2013) 577 [arXiv:1210.1918] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. G.L. Pimentel, Inflationary consistency conditions from a wavefunctional perspective, JHEP 02 (2014) 124 [arXiv:1309.1793] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  78. T. Suyama and M. Yamaguchi, Non-Gaussianity in the modulated reheating scenario, Phys. Rev. D 77 (2008) 023505 [arXiv:0709.2545] [INSPIRE].

  79. K.M. Smith, M. LoVerde and M. Zaldarriaga, A universal bound on N -point correlations from inflation, Phys. Rev. Lett. 107 (2011) 191301 [arXiv:1108.1805] [INSPIRE].

    ADS  Article  Google Scholar 

  80. D. Seery, M.S. Sloth and F. Vernizzi, Inflationary trispectrum from graviton exchange, JCAP 03 (2009) 018 [arXiv:0811.3934] [INSPIRE].

    ADS  Google Scholar 

  81. P.D. Meerburg, J. Meyers, A. van Engelen and Y. Ali-Ha¨ımoud, CMB B-mode non-Gaussianity, Phys. Rev. D 93 (2016) 123511 [arXiv:1603.02243] [INSPIRE].

  82. CMB-S4 collaboration, K.N. Abazajian et al., CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

  83. L. Dai, D. Jeong and M. Kamionkowski, Anisotropic imprint of long-wavelength tensor perturbations on cosmic structure, Phys. Rev. D 88 (2013) 043507 [arXiv:1306.3985] [INSPIRE].

  84. D. Jeong and M. Kamionkowski, Clustering fossils from the early universe, Phys. Rev. Lett. 108 (2012)251301 [arXiv:1203.0302] [INSPIRE].

  85. E. Dimastrogiovanni, M. Fasiello, D. Jeong and M. Kamionkowski, Inflationary tensor fossils in large-scale structure, JCAP 12 (2014) 050 [arXiv:1407.8204] [INSPIRE].

    ADS  Article  Google Scholar 

  86. N. Bartolo, A. Kehagias, M. Liguori, A. Riotto, M. Shiraishi and V. Tansella, Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra, Phys. Rev. D 97 (2018) 023503 [arXiv:1709.05695] [INSPIRE].

  87. G. Franciolini, A. Kehagias and A. Riotto, Imprints of spinning particles on primordial cosmological perturbations, JCAP 02 (2018) 023 [arXiv:1712.06626] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  88. C.T. Byrnes and K.-Y. Choi, Review of local non-Gaussianity from multi-field inflation, Adv. Astron. 2010 (2010) 724525 [arXiv:1002.3110] [INSPIRE].

    ADS  Article  Google Scholar 

  89. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].

  90. D. Anninos, F. Denef, R. Monten and Z. Sun, Higher spin de Sitter Hilbert space, arXiv:1711.10037 [INSPIRE].

  91. A. Cooray, C. Li and A. Melchiorri, The trispectrum of 21 cm background anisotropies as a probe of primordial non-Gaussianity, Phys. Rev. D 77 (2008) 103506 [arXiv:0801.3463] [INSPIRE].

  92. D. Yamauchi and K. Takahashi, Probing higher-order primordial non-Gaussianity with galaxy surveys, Phys. Rev. D 93 (2016) 123506 [arXiv:1509.07585] [INSPIRE].

  93. N. Bartolo, M. Liguori and M. Shiraishi, Primordial trispectra and CMB spectral distortions, JCAP 03 (2016) 029 [arXiv:1511.01474] [INSPIRE].

    ADS  Article  Google Scholar 

  94. M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki and K. Takahashi, CMB bispectrum from primordial scalar, vector and tensor non-Gaussianities, Prog. Theor. Phys. 125 (2011) 795 [arXiv:1012.1079] [INSPIRE].

    ADS  Article  Google Scholar 

  95. M. Shiraishi, M. Liguori and J.R. Fergusson, CMB bounds on tensor-scalar-scalar inflationary correlations, JCAP 01 (2018) 016 [arXiv:1710.06778] [INSPIRE].

    ADS  Article  Google Scholar 

  96. J.M. Martín-García, xAct, efficient tensor computer algebra for the Wolfram language, http://www.xact.es/.

  97. K. Hinterbichler and A. Joyce, Manifest duality for partially massless higher spins, JHEP 09 (2016) 141 [arXiv:1608.04385] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  98. D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].

    ADS  Article  Google Scholar 

  99. G. Anastasiou and R. Olea, From conformal to Einstein gravity, Phys. Rev. D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE].

  100. S. Deser, E. Joung and A. Waldron, Partial masslessness and conformal gravity, J. Phys. A 46 (2013)214019 [arXiv:1208.1307] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  101. R. Manvelyan and W. Rühl, Conformal coupling of higher spin gauge fields to a scalar field in AdS 4 and generalized Weyl invariance, Phys. Lett. B 593 (2004) 253 [hep-th/0403241] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  102. R. Manvelyan and K. Mkrtchyan, Conformal invariant interaction of a scalar field with the higher spin field in AdS D , Mod. Phys. Lett. A 25 (2010) 1333 [arXiv:0903.0058] [INSPIRE].

  103. X. Bekaert and E. Meunier, Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions, JHEP 11 (2010)116 [arXiv:1007.4384] [INSPIRE].

  104. A. Dymarsky, K. Farnsworth, Z. Komargodski, M.A. Luty and V. Prilepina, Scale invariance, conformality and generalized free fields, JHEP 02 (2016) 099 [arXiv:1402.6322] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  105. A. Bzowski and K. Skenderis, Comments on scale and conformal invariance, JHEP 08 (2014)027 [arXiv:1402.3208] [INSPIRE].

  106. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  107. D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time structure of the Bunch-Davies de Sitter wavefunction, JCAP 11 (2015) 048 [arXiv:1406.5490] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  108. A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal invariance and the four point scalar correlator in slow-roll inflation, JHEP 07 (2014) 011 [arXiv:1401.1426] [INSPIRE].

    ADS  Article  Google Scholar 

  109. A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP 03 (2016) 066 [arXiv:1510.08442] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayden Lee.

Additional information

ArXiv ePrint: 1712.06624

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baumann, D., Goon, G., Lee, H. et al. Partially massless fields during inflation. J. High Energ. Phys. 2018, 140 (2018). https://doi.org/10.1007/JHEP04(2018)140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2018)140

Keywords

  • Cosmology of Theories beyond the SM
  • Higher Spin Symmetry
  • Conformal and W Symmetry
  • Higher Spin Gravity