Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Quantum deformation of planar amplitudes

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 April 2018
  • volume 2018, Article number: 121 (2018)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Quantum deformation of planar amplitudes
Download PDF
  • M. Movshev1 &
  • A. Schwarz2 
  • 255 Accesses

  • 1 Citation

  • 3 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

In maximally supersymmetric four-dimensional gauge theories planar on-shell diagrams are closely related to the positive Grassmannian and the cell decomposition of it into the union of so called positroid cells. (This was proven by N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka.) We establish that volume forms on positroids used to express scattering amplitudes can be q-deformed to Hochschild homology classes of corresponding quantum algebras. The planar amplitudes are represented as sums of contributions of some set of positroid cells; we quantize these contributions. In classical limit our considerations allow us to obtain explicit formulas for contributions of positroid cells to scattering amplitudes.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016) [arXiv:1212.5605] [INSPIRE].

  2. N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].

    Article  ADS  Google Scholar 

  3. N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the Amplituhedron in Binary, JHEP 01 (2018) 016 [arXiv:1704.05069] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Artin, Noncommutative Rings, class notes, Math 251, Berkeley, fall 1999 [http://math.mit.edu/∼etingof/artinnotes.pdf].

  5. A. Berenstein, Group-Like Elements In Quantum Groups And Feigin’s Conjecture, q-alg/9605016.

  6. A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005) 405 [math/0404446].

    Article  MathSciNet  Google Scholar 

  7. P.M. Cohn, Skew Fields Theory of General Division Rings, Cambridge University Press (1995).

  8. A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, math/0311149.

  10. V.V. Fock and A.B. Goncharov, Cluster X-varieties, amalgamation and Poisson-Lie groups, in Algebraic geometry and number theory, Birkhäuser Boston (2006), pg. 27-68.

  11. V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm II: The intertwiner, math/0702398.

  12. V.V. Fock and A.B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2008) 223 [math/0702397].

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Geiss, B. Leclerc and J. Schröer, Cluster structures on quantum coordinate rings, Sel. Math. New Ser. 19 (2013) 337 [arXiv:1104.0531].

    Article  MathSciNet  Google Scholar 

  14. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. 78 (1963) 267.

    Article  MathSciNet  Google Scholar 

  15. V. Danilov, A. Karzanov and G. Koshevoy, The purity of set-systems related to Grassmann necklaces, arXiv:1312.3121.

  16. J.A. Guccione and J.J. Guccione, Hochschild homology of some quantum algebras, J. Pure Appl. Algebra 132 (1998) 129.

    Article  MathSciNet  Google Scholar 

  17. S.I. Gelfand and Y.I. Manin, Methods of Homological Algebra, 2nd edition, Springer Monographs in Mathematics, Springer (2003).

  18. A. Konechny and A.S. Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept. 360 (2002) 353 [hep-th/0012145] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Launois, T.H. Lenagan and L. Rigal, Prime ideals in the quantum Grassmannian, Sel. Math. New Ser. 13 (2008) 697. [arXiv:0708.0744].

    Article  MathSciNet  Google Scholar 

  20. S. Launois, T.H. Lenagan and B.M. Nolan, Total positivity is a quantum phenomenom: the Grassmannian case, in preparation.

  21. J.L. Loday, Cyclic Homology, Springer-Verlag Berlin Heidelberg (1992).

    Book  Google Scholar 

  22. M. Mariño, Chern-Simons theory and topological strings, Rev. Mod. Phys. 77 (2005) 675 [hep-th/0406005] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Oh, A. Postnikov and D.E. Speyer, Weak separation and plabic graphs, Proc. Lond. Math. Soc. 110 (2015) 721 [arXiv:1109.4434].

    Article  MathSciNet  Google Scholar 

  24. A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].

  25. J. Scott, Quasi-commuting families of quantum minors, J. Algebra 290 (2005) 204 [math/0008100].

    Article  MathSciNet  Google Scholar 

  26. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. B. Tsygan, Noncommutative calculus and operads, arXiv:1210.5249.

  28. D. Tamarkin and B. Tsygan, Noncommutative differential calculus, homotopy BV algebras and formality conjectures, math/0002116.

  29. M. Wambst, Hochschild and cyclic homology of the quantum multiparametric torus, J. Pure Appl. Algebra 114 (1997) 321.

    Article  MathSciNet  Google Scholar 

  30. C.A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Book 38, Cambridge University Press (1994).

  31. E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133 (1995) 637 [hep-th/9207094] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  32. E. Witten, Quantum background independence in string theory, in Conference on Highlights of Particle and Condensed Matter Physics (SalamFEST), Trieste, Italy, March 8-12, 1993, pp. 257-275 [hep-th/9306122] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Stony Brook University, Stony Brook, NY, 11794-3651, U.S.A.

    M. Movshev

  2. Department of Mathematics, University of California, Davis, CA, 95616, U.S.A.

    A. Schwarz

Authors
  1. M. Movshev
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Schwarz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Schwarz.

Additional information

ArXiv ePrint: 1711.10053

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movshev, M., Schwarz, A. Quantum deformation of planar amplitudes. J. High Energ. Phys. 2018, 121 (2018). https://doi.org/10.1007/JHEP04(2018)121

Download citation

  • Received: 05 March 2018

  • Accepted: 02 April 2018

  • Published: 23 April 2018

  • DOI: https://doi.org/10.1007/JHEP04(2018)121

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Extended Supersymmetry
  • Non-Commutative Geometry
  • Scattering Amplitudes
  • Supersymmetric Gauge Theory

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature