Critical \( \mathcal{N} \) = (1, 1) general massive supergravity

Abstract

In this paper we study the supermultiplet structure of \( \mathcal{N} \) = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    M.A.I. Flohr, Two-dimensional turbulence: yet another conformal field theory solution, Nucl. Phys. B 482 (1996) 567 [hep-th/9606130] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, Holographic applications of logarithmic conformal field theories, J. Phys. A 46 (2013) 494002 [arXiv:1302.0280] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  4. [4]

    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. [7]

    H. Lü and C.N. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S. Deser et al., Critical points of D-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    E.A. Bergshoeff, O. Hohm, J. Rosseel and P.K. Townsend, Modes of log gravity, Phys. Rev. D 83 (2011) 104038 [arXiv:1102.4091] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    I.L. Buchbinder et al., New 4D, N = 1 superfield theory: Model of free massive superspin 3/2 multiplet, Phys. Lett. B 535 (2002) 280 [hep-th/0201096] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    T. Gregoire, M.D. Schwartz and Y. Shadmi, Massive supergravity and deconstruction, JHEP 07 (2004) 029 [hep-th/0403224] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    I.L. Buchbinder, S. James Gates, Jr., S.M. Kuzenko and J. Phillips, Massive 4D, N = 1 superspin 1&3/2 multiplets and dualities, JHEP 02 (2005) 056 [hep-th/0501199] [INSPIRE].

  13. [13]

    S.J. Gates Jr., S.M. Kuzenko and G. Tartaglino-Mazzucchelli, New massive supergravity multiplets, JHEP 02 (2007) 052 [hep-th/0610333] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    S.J. Gates Jr. and K. Koutrolikos, A dynamical theory for linearized massive superspin 3/2, JHEP 03 (2014) 030 [arXiv:1310.7387] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    H. Lü, C.N. Pope, E. Sezgin and L. Wulff, Critical and non-critical Einstein-Weyl supergravity, JHEP 10 (2011) 131 [arXiv:1107.2480] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    S. Deser and J.H. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 97 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    R. Andringa et al., Massive 3D supergravity, Class. Quant. Grav. 27 (2010) 025010 [arXiv:0907.4658] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    E.A. Bergshoeff, O. Hohm, J. Rosseel, E. Sezgin and P.K. Townsend, More on massive 3D supergravity, Class. Quant. Grav. 28 (2011) 015002 [arXiv:1005.3952] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    E.A. Bergshoeff et al., On critical massive (super)gravity in AdS 3, J. Phys. Conf. Ser. 314 (2011) 012009 [arXiv:1011.1153] [INSPIRE].

    Article  Google Scholar 

  20. [20]

    G. Alkaç et al., Massive \( \mathcal{N} \) = 2 supergravity in three dimensions, JHEP 02 (2015) 125 [arXiv:1412.3118] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Three-dimensional N = 2 (AdS) supergravity and associated supercurrents, JHEP 12 (2011) 052 [arXiv:1109.0496] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    S.M. Kuzenko et al., Three-dimensional \( \mathcal{N} \) = 2 supergravity theories: From superspace to components, Phys. Rev. D 89 (2014) 085028 [arXiv:1312.4267] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Higher derivative couplings and massive supergravity in three dimensions, JHEP 09 (2015) 081 [arXiv:1506.09063] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  24. [24]

    N.S. Deger, A. Kaya, H. Samtleben and E. Sezgin, Supersymmetric warped AdS in extended topologically massive supergravity, Nucl. Phys. B 884 (2014) 106 [arXiv:1311.4583] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    G. Alkac et al., Supersymmetric backgrounds and black holes in \( \mathcal{N} \) = (1, 1) cosmological new massive supergravity, JHEP 10 (2015) 141 [arXiv:1507.06928] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    N.S. Deger and G. Moutsopoulos, Supersymmetric solutions of N = (2, 0) topologically massive supergravity, Class. Quant. Grav. 33 (2016) 155006 [arXiv:1602.07263] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    M. Roček and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons terms as d = 3 extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    H. Nishino and S.J. Gates, Jr., Chern-Simons theories with supersymmetries in three-dimensions, Int. J. Mod. Phys. A 8 (1993) 3371 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    E. Bergshoeff, S. Cecotti, H. Samtleben and E. Sezgin, Superconformal σ-models in three dimensions, Nucl. Phys. B 838 (2010) 266 [arXiv:1002.4411] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    M. Becker, P. Bruillard and S. Downes, Chiral supergravity, JHEP 10 (2009) 004 [arXiv:0906.4822] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    D. Grumiller and I. Sachs, AdS 3 /LCFT 2correlators in cosmological topologically massive gravity, JHEP 03 (2010) 012 [arXiv:0910.5241] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    D. Grumiller and O. Hohm, AdS 3 /LCFT 2 : correlators in new massive gravity, Phys. Lett. B 686 (2010) 264 [arXiv:0911.4274] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    D. Grumiller, N. Johansson and T. Zojer, Short-cut to new anomalies in gravity duals to logarithmic conformal field theories, JHEP 01 (2011) 090 [arXiv:1010.4449] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    M. Khorrami, A. Aghamohammadi and A.M. Ghezelbash, Logarithmic N = 1 superconformal field theories, Phys. Lett. B 439 (1998) 283 [hep-th/9803071] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    D. Drichel and M. Flohr, Correlation functions in N = 3 superconformal theory, arXiv:1006.3346 [INSPIRE].

  36. [36]

    P.A. Pearce, J. Rasmussen and E. Tartaglia, Logarithmic superconformal minimal models, J. Stat. Mech. 1405 (2014) P05001 [arXiv:1312.6763] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  37. [37]

    D. Grumiller and P. van Nieuwenhuizen, Holographic counterterms from local supersymmetry without boundary conditions, Phys. Lett. B 682 (2010) 462 [arXiv:0908.3486] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nihat Sadik Deger.

Additional information

ArXiv ePrint: 1802.03957

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deger, N.S., Moutsopoulos, G. & Rosseel, J. Critical \( \mathcal{N} \) = (1, 1) general massive supergravity. J. High Energ. Phys. 2018, 105 (2018). https://doi.org/10.1007/JHEP04(2018)105

Download citation

Keywords

  • Supergravity Models
  • AdS-CFT Correspondence