J. Guven and P. Vázquez-Montejo, The Geometry of Fluid Membranes: Variational Principles, Symmetries and Conservation Laws, Springer International Publishing, Cham (2018), pp. 167-219.
Google Scholar
D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
K. Jensen and A. O’Bannon, Constraint on Defect and Boundary Renormalization Group Flows, Phys. Rev. Lett. 116 (2016) 091601 [arXiv:1509.02160] [INSPIRE].
ADS
Article
Google Scholar
M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Carter, Brane dynamics for treatment of cosmic strings and vortons, in Recent developments in gravitation and mathematical physics. Proceedings, 2nd Mexican School, Tlaxcala, Mexico, December 1-7, 1996 (1997) [hep-th/9705172] [INSPIRE].
R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Armas, How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes, JHEP 09 (2013) 073 [arXiv:1304.7773] [INSPIRE].
ADS
Article
Google Scholar
J. Armas, J. Bhattacharya and N. Kundu, Surface transport in plasma-balls, JHEP 06 (2016) 015 [arXiv:1512.08514] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C.V. Johnson, D-brane primer, in Strings, branes and gravity. Proceedings, Theoretical Advanced Study Institute, TASI’99, Boulder, U.S.A., May 31-June 25, 1999, pp. 129-350, DOI:https://doi.org/10.1142/9789812799630_0002 [hep-th/0007170] [INSPIRE].
B. Carter, Outer curvature and conformal geometry of an imbedding, J. Geom. Phys. 8 (1992) 53 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Carter, Perturbation dynamics for membranes and strings governed by Dirac Goto Nambu action in curved space, Phys. Rev. D 48 (1993) 4835 [INSPIRE].
ADS
MathSciNet
Google Scholar
H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].
ADS
Article
Google Scholar
X. Dong and A. Lewkowycz, Entropy, Extremality, Euclidean Variations and the Equations of Motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].
ADS
Article
Google Scholar
J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFT
d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].
L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].
ADS
Article
Google Scholar
P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N} \) = 4 SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Rastelli and X. Zhou, The Mellin Formalism for Boundary CFT
d, JHEP 10 (2017) 146 [arXiv:1705.05362] [INSPIRE].
A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].
ADS
MathSciNet
Google Scholar
O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Erdmenger, M. Flory and M.-N. Newrzella, Bending branes for DCFT in two dimensions, JHEP 01 (2015) 058 [arXiv:1410.7811] [INSPIRE].
ADS
Article
Google Scholar
J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella and J.M.S. Wu, Entanglement Entropy in a Holographic Kondo Model, Fortsch. Phys. 64 (2016) 109 [arXiv:1511.03666] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in Defect CFT and Integrability, JHEP 08 (2015) 098 [arXiv:1506.06958] [INSPIRE].
MathSciNet
Article
Google Scholar
I. Buhl-Mortensen, M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, One-loop one-point functions in gauge-gravity dualities with defects, Phys. Rev. Lett. 117 (2016) 231603 [arXiv:1606.01886] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. de Leeuw, A.C. Ipsen, C. Kristjansen, K.E. Vardinghus and M. Wilhelm, Two-point functions in AdS/dCFT and the boundary conformal bootstrap equations, JHEP 08 (2017) 020 [arXiv:1705.03898] [INSPIRE].
MathSciNet
Article
Google Scholar
P. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol. 26 (1970) 61.
Article
Google Scholar
W. Helfrich, Elastic Properties of Lipid Bilayers — Theory and Possible Experiments, Z. Naturforsch. C 28 (1973) 693.
Article
Google Scholar
U. Seifert, Configurations of fluid membranes and vesicles, Adv. Phys. 46 (1997) 13.
ADS
Article
Google Scholar
Z.C. Tu and Z.C. Ou-Yang, A geometric theory on the elasticity of bio-membranes, J. Phys. A 37 (2004) 11407.
ADS
MathSciNet
MATH
Google Scholar
L. Landau and E.M. Lifshitz, Theory of elasticity, Course of Theoretical Physics 7 (1959) 134.
MathSciNet
Google Scholar
J. Guven, Perturbations of a topological defect as a theory of coupled scalar fields in curved space, Phys. Rev. D 48 (1993) 5562 [gr-qc/9304033] [INSPIRE].
R. Capovilla and J. Guven, Geometry of deformations of relativistic membranes, Phys. Rev. D 51 (1995) 6736 [gr-qc/9411060] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Guven, Membrane geometry with auxiliary variables and quadratic constraints, J. Phys. A 37 (2004) L313 [math-ph/0404064] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Guven and P. Vazquez-Montejo, Metric variations become a surface, Phys. Lett. A 377 (2013) 1507 [arXiv:1211.7154] [INSPIRE].
ADS
Article
Google Scholar
G. Arreaga, R. Capovilla and J. Guven, Noether currents for bosonic branes, Annals Phys. 279 (2000) 126 [hep-th/0002088] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys. 931 (2017) pp.1 [arXiv:1609.01287] [INSPIRE].
MathSciNet
Article
Google Scholar
O.-Y. Zhong-can and W. Helfrich, Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A 39 (1989) 5280.
ADS
Article
Google Scholar
C. Charmousis and R. Zegers, Matching conditions for a brane of arbitrary codimension, JHEP 08 (2005) 075 [hep-th/0502170] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Fonda, V. Jejjala and A. Veliz-Osorio, On the Shape of Things: From holography to elastica, Annals Phys. 385 (2017) 358 [arXiv:1611.03462] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Armas, J. Gath, V. Niarchos, N.A. Obers and A.V. Pedersen, Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds, JHEP 10 (2016) 154 [arXiv:1606.09644] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R.A. Battye and B. Carter, Gravitational perturbations of relativistic membranes and strings, Phys. Lett. B 357 (1995) 29 [hep-ph/9508300] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Capovilla and J. Guven, Large deformations of relativistic membranes: A Generalization of the Raychaudhuri equations, Phys. Rev. D 52 (1995) 1072 [gr-qc/9411061] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Carter, Amalgamated Codazzi-Raychaudhuri identity for foliation, Contemp. Math. 203 (1997) 207 [hep-th/9705083] [INSPIRE].
Article
Google Scholar
R.A. Porto, The effective field theorist’s approach to gravitational dynamics, Phys. Rept. 633 (2016) 1 [arXiv:1601.04914] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Aminov, The Geometry of Submanifolds, Taylor & Francis (2001).
A. Papapetrou, Spinning test particles in general relativity. 1., Proc. Roy. Soc. Lond. A 209 (1951) 248 [INSPIRE].
J. Armas and T. Harmark, Constraints on the effective fluid theory of stationary branes, JHEP 10 (2014) 063 [arXiv:1406.7813] [INSPIRE].
ADS
Article
Google Scholar
L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Vasilic and M. Vojinovic, Classical spinning branes in curved backgrounds, JHEP 07 (2007) 028 [arXiv:0707.3395] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Armas, (Non)-Dissipative Hydrodynamics on Embedded Surfaces, JHEP 09 (2014) 047 [arXiv:1312.0597] [INSPIRE].
J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young Modulus of Black Strings and the Fine Structure of Blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids, JHEP 06 (2017) 090 [arXiv:1612.08088] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Cvitan, P. Dominis Prester, S. Pallua, I. Smolić and T. Štemberga, Parity-odd surface anomalies and correlation functions on conical defects, arXiv:1503.06196 [INSPIRE].
A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].
ADS
Article
Google Scholar
T. Ali, S. Shajidul Haque and J. Murugan, Holographic Entanglement Entropy for Gravitational Anomaly in Four Dimensions, arXiv:1611.03415 [INSPIRE].
S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett. B 309 (1993) 279 [hep-th/9302047] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Taylor and W. Woodhead, Renormalized entanglement entropy, JHEP 08 (2016) 165 [arXiv:1604.06808] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Azeyanagi, R. Loganayagam and G.S. Ng, Holographic Entanglement for Chern-Simons Terms, JHEP 02 (2017) 001 [arXiv:1507.02298] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Caceres, R. Mohan and P.H. Nguyen, On holographic entanglement entropy of Horndeski black holes, JHEP 10 (2017) 145 [arXiv:1707.06322] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar