Geometric engineering on flops of length two


Type IIA on the conifold is a prototype example for engineering QED with one charged hypermultiplet. The geometry admits a flop of length one. In this paper, we study the next generation of geometric engineering on singular geometries, namely flops of length two such as Laufer’s example, which we affectionately think of as the conifold 2.0. Type IIA on the latter geometry gives QED with higher-charge states. In type IIB, even a single D3-probe gives rise to a nonabelian quiver gauge theory. We study this class of geometries explicitly by leveraging their quiver description, showing how to parametrize the exceptional curve, how to see the flop transition, and how to find the noncompact divisors intersecting the curve. With a view towards F-theory applications, we show how these divisors contribute to the enhancement of the Mordell-Weil group of the local elliptic fibration defined by Laufer’s example.

A preprint version of the article is available at ArXiv.


  1. [1]

    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].

  2. [2]

    M. Bershadsky, Z. Kakushadze and C. Vafa, String expansion as large N expansion of gauge theories, Nucl. Phys. B 523 (1998) 59 [hep-th/9803076] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

  6. [6]

    S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

  9. [9]

    P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].

    Article  Google Scholar 

  12. [12]

    M.R. Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42 (2001) 2818 [hep-th/0011017] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    E.R. Sharpe, D-branes, derived categories and Grothendieck groups, Nucl. Phys. B 561 (1999) 433 [hep-th/9902116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    D. Berenstein and R.G. Leigh, Resolution of stringy singularities by noncommutative algebras, JHEP 06 (2001) 030 [hep-th/0105229] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    R.R. Parwani, Obtaining bounds on the sum of divergent series in physics, Int. J. Mod. Phys. A 18 (2003) 293 [math-ph/0211064] [INSPIRE].

  16. [16]

    A. Bondal and D. Orlov, Derived categories of coherent sheaves, math/0206295.

  17. [17]

    D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc. 260 (1980) 35.

    MathSciNet  Article  Google Scholar 

  18. [18]

    M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004) 423.

    MathSciNet  Article  Google Scholar 

  19. [19]

    P.S. Aspinwall and D.R. Morrison, Quivers from matrix factorizations, Comm. Math. Phys. 313 (2012) 607.

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    J. Kollár, Flops, Nagoya Math. J. 113 (1989) 15.

    MathSciNet  Article  Google Scholar 

  21. [21]

    C. Curto and D. R. Morrison, Threefold flops via matrix factorization, J. Alg. Geom. 22 (2013) 599.

    MathSciNet  Article  Google Scholar 

  22. [22]

    M. Reid, Minimal models of canonical 3-folds, in Algebraic varieties and analytic varieties, S. IItaka ed., North-Holland, Amsterdam The Netherlands 1983.

  23. [23]

    H.B. Laufer, On ℂℙ1 as an exceptional set, in Recent developments in several complex variables, J.E. Fornasses ed., Princeton University Press, Princeton U.S.A. (1981).

  24. [24]

    D. Forcella, I. Garcia-Etxebarria and A. Uranga, E3-brane instantons and baryonic operators for D3-branes on toric singularities, JHEP 03 (2009) 041 [arXiv:0806.2291] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    S. Franco and A. Uranga, Bipartite field theories from D-branes, JHEP 04 (2014) 161 [arXiv:1306.6331] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series volume 146, Cambridge University Press, Cambridge U.K. (1990).

  27. [27]

    M. van den Bergh, Non-commutative crepant resolutions, in The legacy of Niels Henrik Abel, R. Piene and A. Laudal eds., Springer, Germany (2004).

  28. [28]

    M. Wemyss, Lectures on noncommutative resolutions, arXiv:1210.2564 [INSPIRE].

  29. [29]

    A.D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. 45 (1994) 515.

    MathSciNet  Article  Google Scholar 

  30. [30]

    M. Wemyss, private communication.

  31. [31]

    M. Reineke, Quiver moduli and small desingularizations of some git quotients, arXiv:1511.08316.

  32. [32]

    J. Engel and M. Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009) 817.

    MathSciNet  Article  Google Scholar 

  33. [33]

    M. F. Atiyah, On analytic surfaces with double points, Proc. Roy. Soc. London. A 247 (1958) 237.

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    H.C. Pinkham, Factorization of birational maps in dimension 3, in Singularities, Part 2, P. Orlik ed., American Mathematical Society, Providence U.S.A. (1983).

  35. [35]

    M. Esole and S.-T. Yau, Small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys. 17 (2013) 1195 [arXiv:1107.0733] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  36. [36]

    A.P. Braun and T. Watari, On singular fibres in F-theory, JHEP 07 (2013) 031 [arXiv:1301.5814] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    A. Collinucci, M. Fazzi, D.R. Morrison and R. Valandro, to appear.

  39. [39]

    M. Artin and J.-L. Verdier, Reflexive modules over rational double points, Math. Ann. 270 (1985) 79.

    MathSciNet  Article  Google Scholar 

  40. [40]

    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in the proceedings of Progress in string theory, Summer School (TASI 2003), June 2-27, Boulder, U.S.A. (2004), hep-th/0403166 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Marco Fazzi.

Additional information

ArXiv ePrint: 1802.00813

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collinucci, A., Fazzi, M. & Valandro, R. Geometric engineering on flops of length two. J. High Energ. Phys. 2018, 90 (2018).

Download citation


  • D-branes
  • Differential and Algebraic Geometry
  • F-Theory
  • Brane Dynamics in Gauge Theories