Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Soft photon and two hard jets forward production in proton-nucleus collisions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 11 April 2018
  • Volume 2018, article number 63, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Soft photon and two hard jets forward production in proton-nucleus collisions
Download PDF
  • Tolga Altinoluk1,
  • Néstor Armesto2,
  • Alex Kovner3,4,5,
  • Michael Lublinsky4 &
  • …
  • Elena Petreska6,7 
  • 457 Accesses

  • 11 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We calculate the cross section for production of a soft photon and two hard jets in the forward rapidity region in proton-nucleus collisions at high energies. The calculation is performed within the hybrid formalism. The hardness of the final particles is defined with respect to the saturation scale of the nucleus. We consider both the correlation limit of small momentum imbalance and the dilute target limit where the momentum imbalance is of the order of the hardness of the jets. The results depend on the first two transversemomentum-dependent (TMD) gluon distributions of the nucleus.

Article PDF

Download to read the full article text

Similar content being viewed by others

Forward \(\gamma \)+jet production in proton-proton and proton-lead collisions at LHC within the FoCal calorimeter acceptance

Article Open access 27 September 2023

Photon–jet cross sections in deep-inelastic scattering

Article Open access 10 February 2015

Inclusive prompt photon-jet correlations as a probe of gluon saturation in electron-nucleus scattering at small x

Article Open access 12 January 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. F. Arleo, K.J. Eskola, H. Paukkunen and C.A. Salgado, Inclusive prompt photon production in nuclear collisions at RHIC and LHC, JHEP 04 (2011) 055 [arXiv:1103.1471] [INSPIRE].

    Article  ADS  Google Scholar 

  2. L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.H. Mueller and J.-w. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].

    Article  ADS  Google Scholar 

  4. A.H. Mueller, Small x Behavior and Parton Saturation: A QCD Model, Nucl. Phys. B 335 (1990) 115 [INSPIRE].

    Article  ADS  Google Scholar 

  5. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].

    Article  ADS  Google Scholar 

  6. A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].

    Article  ADS  Google Scholar 

  7. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Balitsky, Factorization for high-energy scattering, Phys. Rev. Lett. 81 (1998) 2024 [hep-ph/9807434] [INSPIRE].

    Article  ADS  Google Scholar 

  9. I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].

  10. Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].

  11. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

  13. J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].

  14. A. Kovner and J.G. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].

  15. A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].

  16. H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate: I, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

    Article  ADS  Google Scholar 

  18. E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].

    Article  ADS  Google Scholar 

  19. E. Ferreiro, E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate: II, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P. Stankus, Direct photon production in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 55 (2005) 517 [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Aurenche, R. Baier, M. Fontannaz and D. Schiff, Prompt Photon Production at Large p T Scheme Invariant QCD Predictions and Comparison with Experiment, Nucl. Phys. B 297 (1988) 661 [INSPIRE].

  22. F. Aversa, P. Chiappetta, M. Greco and J.P. Guillet, QCD Corrections to Parton-Parton Scattering Processes, Nucl. Phys. B 327 (1989) 105 [INSPIRE].

    Article  ADS  Google Scholar 

  23. A.V. Lipatov and N.P. Zotov, Prompt photon hadroproduction at high energies in the k T -factorization approach, J. Phys. G 34 (2007) 219 [hep-ph/0507243] [INSPIRE].

  24. S. Benić, K. Fukushima, O. Garcia-Montero and R. Venugopalan, Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions, JHEP 01 (2017) 115 [arXiv:1609.09424] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, The Color glass condensate and hadron production in the forward region, Nucl. Phys. A 765 (2006) 464 [hep-ph/0506308] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Altinoluk and A. Kovner, Particle Production at High Energy and Large Transverse Momentum: “The Hybrid Formalism” Revisited, Phys. Rev. D 83 (2011) 105004 [arXiv:1102.5327] [INSPIRE].

  27. G.A. Chirilli, B.-W. Xiao and F. Yuan, Inclusive Hadron Productions in pA Collisions, Phys. Rev. D 86 (2012) 054005 [arXiv:1203.6139] [INSPIRE].

  28. Z.-B. Kang, I. Vitev and H. Xing, Next-to-leading order forward hadron production in the small-x regime: rapidity factorization, Phys. Rev. Lett. 113 (2014) 062002 [arXiv:1403.5221] [INSPIRE].

  29. Z.-B. Kang, I. Vitev and H. Xing, Next-to-leading order forward hadron production in the small-x regime: rapidity factorization, Phys. Rev. Lett. 113 (2014) 062002 [arXiv:1403.5221] [INSPIRE].

  30. B.-W. Xiao and F. Yuan, Comment on “Next-to-leading order forward hadron production in the small-x regime: rapidity factorization” arXiv:1403.5221 by Kang et al., arXiv:1407.6314 [INSPIRE].

  31. K. Watanabe, B.-W. Xiao, F. Yuan and D. Zaslavsky, Implementing the exact kinematical constraint in the saturation formalism, Phys. Rev. D 92 (2015) 034026 [arXiv:1505.05183] [INSPIRE].

  32. B. Ducloué, T. Lappi and Y. Zhu, Single inclusive forward hadron production at next-to-leading order, Phys. Rev. D 93 (2016) 114016 [arXiv:1604.00225] [INSPIRE].

  33. B. Ducloué, T. Lappi and Y. Zhu, Implementation of NLO high energy factorization in single inclusive forward hadron production, Phys. Rev. D 95 (2017) 114007 [arXiv:1703.04962] [INSPIRE].

  34. E. Iancu, A.H. Mueller and D.N. Triantafyllopoulos, CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order, JHEP 12 (2016) 041 [arXiv:1608.05293] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Single-inclusive particle production in proton-nucleus collisions at next-to-leading order in the hybrid formalism, Phys. Rev. D 91 (2015) 094016 [arXiv:1411.2869] [INSPIRE].

  36. T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Heavy quarks in proton-nucleus collisions: the hybrid formalism, Phys. Rev. D 93 (2016) 054049 [arXiv:1511.09415] [INSPIRE].

  37. F. Gelis and J. Jalilian-Marian, Photon production in high-energy proton nucleus collisions, Phys. Rev. D 66 (2002) 014021 [hep-ph/0205037] [INSPIRE].

  38. S. Benić and A. Dumitru, Prompt photon-jet angular correlations at central rapidities in p+A collisions, Phys. Rev. D 97 (2018) 014012 [arXiv:1710.01991] [INSPIRE].

  39. M. Lublinsky and Y. Mulian, High Energy QCD at NLO: from light-cone wave function to JIMWLK evolution, JHEP 05 (2017) 097 [arXiv:1610.03453] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Kovner and A.H. Rezaeian, Double parton scattering in the CGC: Double quark production and effects of quantum statistics, Phys. Rev. D 96 (2017) 074018 [arXiv:1707.06985] [INSPIRE].

  41. V.N. Gribov, B.L. Ioffe and I.Y. Pomeranchuk, What is the range of interactions at high-energies, Sov. J. Nucl. Phys. 2 (1966) 549 [Yad. Fiz. 2 (1965) 768] [INSPIRE].

  42. B.L. Ioffe, Space-time picture of photon and neutrino scattering and electroproduction cross-section asymptotics, Phys. Lett. B 30 (1969) 123 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [Zh. Eksp. Teor. Fiz. 30 (1956) 87] [INSPIRE].

  44. A.H. Mueller, B.-W. Xiao and F. Yuan, Sudakov double logarithms resummation in hard processes in the small-x saturation formalism, Phys. Rev. D 88 (2013) 114010 [arXiv:1308.2993] [INSPIRE].

  45. C. Marquet, E. Petreska and C. Roiesnel, Transverse-momentum-dependent gluon distributions from JIMWLK evolution, JHEP 10 (2016) 065 [arXiv:1608.02577] [INSPIRE].

    Article  ADS  Google Scholar 

  46. P. Kotko, K. Kutak, C. Marquet, E. Petreska, S. Sapeta and A. van Hameren, Improved TMD factorization for forward dijet production in dilute-dense hadronic collisions, JHEP 09 (2015) 106 [arXiv:1503.03421] [INSPIRE].

    Article  ADS  Google Scholar 

  47. E. Iancu and J. Laidet, Gluon splitting in a shockwave, Nucl. Phys. A 916 (2013) 48 [arXiv:1305.5926] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].

  49. T. Altinoluk, N. Armesto, G. Beuf and A.H. Rezaeian, Diffractive Dijet Production in Deep Inelastic Scattering and Photon-Hadron Collisions in the Color Glass Condensate, Phys. Lett. B 758 (2016) 373 [arXiv:1511.07452] [INSPIRE].

  50. K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].

  51. K.J. Golec-Biernat and M. Wusthoff, Saturation in diffractive deep inelastic scattering, Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE].

  52. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  53. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. National Centre for Nuclear Research, Warsaw, 00-681, Poland

    Tolga Altinoluk

  2. Departamento de Física de Partículas, AEFIS and IGFAE, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain

    Néstor Armesto

  3. Physics Department, University of Connecticut, 2152 Hillside road, Storrs, CT, 06269, U.S.A.

    Alex Kovner

  4. Physics Department, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel

    Alex Kovner & Michael Lublinsky

  5. Theoretical Physics Department, CERN, Geneve 23, CH-1211, Switzerland

    Alex Kovner

  6. Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, Amsterdam, NL-1081 HV, The Netherlands

    Elena Petreska

  7. Nikhef, Science Park 105, Amsterdam, NL-1098 XG, The Netherlands

    Elena Petreska

Authors
  1. Tolga Altinoluk
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Néstor Armesto
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alex Kovner
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Michael Lublinsky
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Elena Petreska
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tolga Altinoluk.

Additional information

ArXiv ePrint: 1802.01398

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altinoluk, T., Armesto, N., Kovner, A. et al. Soft photon and two hard jets forward production in proton-nucleus collisions. J. High Energ. Phys. 2018, 63 (2018). https://doi.org/10.1007/JHEP04(2018)063

Download citation

  • Received: 13 February 2018

  • Accepted: 09 March 2018

  • Published: 11 April 2018

  • DOI: https://doi.org/10.1007/JHEP04(2018)063

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heavy Ion Phenomenology
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature