Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Heavy-flavor parton distributions without heavy-flavor matching prescriptions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 10 April 2018
  • Volume 2018, article number 46, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Heavy-flavor parton distributions without heavy-flavor matching prescriptions
Download PDF
  • Valerio Bertone  ORCID: orcid.org/0000-0003-0148-02721,2,
  • Alexandre Glazov3,
  • Alexander Mitov4,
  • Andrew S. Papanastasiou4 &
  • …
  • Maria Ubiali5 
  • 445 Accesses

  • 15 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We show that the well-known obstacle for working with the zero-mass variable flavor number scheme, namely, the omission of \( \mathcal{O}(1) \) mass power corrections close to the conventional heavy flavor matching point (HFMP) μb = m, can be easily overcome. For this it is sufficient to take advantage of the freedom in choosing the position of the HFMP. We demonstrate that by choosing a sufficiently large HFMP, which could be as large as 10 times the mass of the heavy quark, one can achieve the following improvements: 1) above the HFMP the size of missing power corrections \( \mathcal{O}(m) \) is restricted by the value of μb and, therefore, the error associated with their omission can be made negligible; 2) additional prescriptions for the definition of cross-sections are not required; 3) the resummation accuracy is maintained and 4) contrary to the common lore we find that the discontinuity of αs and pdfs across thresholds leads to improved continuity in predictions for observables. We have considered a large set of proton-proton and electron-proton collider processes, many through NNLO QCD, that demonstrate the broad applicability of our proposal.

Article PDF

Download to read the full article text

Similar content being viewed by others

Heavy-flavor hadro-production with heavy-quark masses renormalized in the \( \overline{\mathrm{MS}} \), MSR and on-shell schemes

Article Open access 06 April 2021

An FONLL prescription with coexisting flavor number PDFs

Article Open access 01 October 2024

Flavor fragmentation function factorization

Article Open access 23 January 2024
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].

  2. J.C. Collins, D.E. Soper and G.F. Sterman, Heavy particle production in high-energy hadron collisions, Nucl. Phys. B 263 (1986) 37 [INSPIRE].

    Article  ADS  Google Scholar 

  3. J.C. Collins, Hard scattering factorization with heavy quarks: a general treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [INSPIRE].

  4. NNPDF collaboration, R.D. Ball et al., A determination of the charm content of the proton, Eur. Phys. J. C 76 (2016) 647 [arXiv:1605.06515] [INSPIRE].

  5. R.D. Ball, M. Bonvini and L. Rottoli, Charm in deep-inelastic scattering, JHEP 11 (2015) 122 [arXiv:1510.02491] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R.D. Ball et al., Intrinsic charm in a matched general-mass scheme, Phys. Lett. B 754 (2016) 49 [arXiv:1510.00009] [INSPIRE].

    Article  ADS  Google Scholar 

  7. NNPDF collaboration, R.D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  8. T.-J. Hou et al., CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis, JHEP 02 (2018) 059 [arXiv:1707.00657] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Symanzik, Infrared singularities and small distance behavior analysis, Commun. Math. Phys. 34 (1973) 7 [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

    ADS  Google Scholar 

  11. J.C. Collins, F. Wilczek and A. Zee, Low-energy manifestations of heavy particles: application to the neutral current, Phys. Rev. D 18 (1978) 242 [INSPIRE].

    ADS  Google Scholar 

  12. J.C. Collins and W.-K. Tung, Calculating heavy quark distributions, Nucl. Phys. B 278 (1986) 934 [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Buza, Y. Matiounine, J. Smith, R. Migneron and W.L. van Neerven, Heavy quark coefficient functions at asymptotic values Q 2 ≫ m 2, Nucl. Phys. B 472 (1996) 611 [hep-ph/9601302] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Ablinger, J. Blumlein, S. Klein, C. Schneider and F. Wissbrock, The O(α 3 s ) massive operator matrix elements of O(n f) for the structure function F 2(x, Q 2) and transversity, Nucl. Phys. B 844 (2011) 26 [arXiv:1008.3347] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Blumlein, A. Hasselhuhn, S. Klein and C. Schneider, The O(α 3 s n f T 2 F C A,F) contributions to the gluonic massive operator matrix elements, Nucl. Phys. B 866 (2013) 196, arXiv:1205.4184] [INSPIRE].

  17. J. Ablinger et al., The transition matrix element A gq(N) of the variable flavor number scheme at O(α 3 s ), Nucl. Phys. B 882 (2014) 263 [arXiv:1402.0359] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Ablinger et al., The O(α 3 s T 2 F ) contributions to the gluonic operator matrix element, Nucl. Phys. B 885 (2014) 280 [arXiv:1405.4259] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Behring et al., The logarithmic contributions to the O(α 3 s ) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering, Eur. Phys. J. C 74 (2014) 3033 [arXiv:1403.6356] [INSPIRE].

    Article  ADS  Google Scholar 

  20. Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].

  21. K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].

  22. B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko and O.L. Veretin, Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme, Phys. Rev. Lett. 97 (2006) 042001 [hep-ph/0607202] [INSPIRE].

  23. M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R.S. Thorne and R.G. Roberts, An ordered analysis of heavy flavor production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R.S. Thorne and R.G. Roberts, A practical procedure for evolving heavy flavor structure functions, Phys. Lett. B 421 (1998) 303 [hep-ph/9711223] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Krämer, F.I. Olness and D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering, Phys. Rev. D 62 (2000) 096007 [hep-ph/0003035] [INSPIRE].

  27. R.S. Thorne, A variable-flavor number scheme for NNLO, Phys. Rev. D 73 (2006) 054019 [hep-ph/0601245] [INSPIRE].

  28. W.K. Tung et al., Heavy quark mass effects in deep inelastic scattering and global QCD analysis, JHEP 02 (2007) 053 [hep-ph/0611254] [INSPIRE].

  29. P.M. Nadolsky and W.-K. Tung, Improved formulation of global QCD analysis with zero-mass matrix elements, Phys. Rev. D 79 (2009) 113014 [arXiv:0903.2667] [INSPIRE].

    ADS  Google Scholar 

  30. S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Guzzi, P.M. Nadolsky, H.-L. Lai and C.P. Yuan, General-mass treatment for deep inelastic scattering at two-loop accuracy, Phys. Rev. D 86 (2012) 053005 [arXiv:1108.5112] [INSPIRE].

    ADS  Google Scholar 

  32. T. Han, J. Sayre and S. Westhoff, Top-quark initiated processes at high-energy hadron colliders, JHEP 04 (2015) 145 [arXiv:1411.2588] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].

  34. S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark fusion in a matched scheme, Phys. Lett. B 751 (2015) 331 [arXiv:1508.01529] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark fusion: matching beyond leading order, Phys. Lett. B 763 (2016) 190 [arXiv:1607.00389] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F.I. Olness and W.-K. Tung, When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD based parton model, Nucl. Phys. B 308 (1988) 813 [INSPIRE].

    Article  ADS  Google Scholar 

  37. F.I. Olness and S.T. Riemersma, Leptoproduction of heavy quarks in the fixed and variable flavor schemes, Phys. Rev. D 51 (1995) 4746 [hep-ph/9409208] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Resummation and matching of b-quark mass effects in \( b\overline{b}H \) production, JHEP 11 (2015) 196 [arXiv:1508.03288] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Matched predictions for the \( b\overline{b}H \) cross section at the 13 TeV LHC, JHEP 10 (2016) 053 [arXiv:1605.01733] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Blumlein and W.L. van Neerven, Heavy flavor contributions to the deep inelastic scattering sum rules, Phys. Lett. B 450 (1999) 417 [hep-ph/9811351] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A.L. Kataev, G. Parente and A.V. Sidorov, Improved fits to the xF3 CCFR data at the next-to-next-to-leading order and beyond, Phys. Part. Nucl. 34 (2003) 20 [Erratum ibid. 38 (2007) 827] [Fiz. Elem. Chast. Atom. Yadra 34 (2003) 43] [hep-ph/0106221] [INSPIRE].

  42. F. Maltoni, T. McElmurry, R. Putman and S. Willenbrock, Choosing the factorization scale in perturbative QCD, hep-ph/0703156 [INSPIRE].

  43. F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].

  44. C. Degrande, M. Ubiali, M. Wiesemann and M. Zaro, Heavy charged Higgs boson production at the LHC, JHEP 10 (2015) 145 [arXiv:1507.02549] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Lim, F. Maltoni, G. Ridolfi and M. Ubiali, Anatomy of double heavy-quark initiated processes, JHEP 09 (2016) 132 [arXiv:1605.09411] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Associated production of a Z boson and a single heavy quark jet, Phys. Rev. D 69 (2004) 074021 [hep-ph/0312024] [INSPIRE].

  47. M. Cacciari, P. Nason and C. Oleari, Crossing heavy-flavor thresholds in fragmentation functions, JHEP 10 (2005) 034 [hep-ph/0504192] [INSPIRE].

    Article  Google Scholar 

  48. B. Mele and P. Nason, The Fragmentation function for heavy quarks in QCD, Nucl. Phys. B 361 (1991) 626 [Erratum ibid. B 921 (2017) 841] [INSPIRE].

  49. K. Melnikov and A. Mitov, Perturbative heavy quark fragmentation function through O(α 2 s ), Phys. Rev. D 70 (2004) 034027 [hep-ph/0404143] [INSPIRE].

  50. A. Mitov, Perturbative heavy quark fragmentation function through O(α 2 s ): gluon initiated contribution, Phys. Rev. D 71 (2005) 054021 [hep-ph/0410205] [INSPIRE].

  51. The xFitter Developers Team collaboration, V. Bertone et al., Impact of the heavy quark matching scales in PDF fits, Eur. Phys. J. C 77 (2017) 837 [arXiv:1707.05343] [INSPIRE].

  52. S. Kretzer and I. Schienbein, Heavy quark initiated contributions to deep inelastic structure functions, Phys. Rev. D 58 (1998) 094035 [hep-ph/9805233] [INSPIRE].

  53. R. Doria, J. Frenkel and J.C. Taylor, Counter example to nonabelian Bloch-Nordsieck theorem, Nucl. Phys. B 168 (1980) 93 [INSPIRE].

    Article  ADS  Google Scholar 

  54. C. Di’Lieto, S. Gendron, I.G. Halliday and C.T. Sachrajda, A counter example to the Bloch-Nordsieck theorem in nonabelian gauge theories, Nucl. Phys. B 183 (1981) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  55. S. Catani, M. Ciafaloni and G. Marchesini, Noncancelling infrared divergences in QCD coherent state, Nucl. Phys. B 264 (1986) 588 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).

    Book  Google Scholar 

  57. C. Alexandrou et al., A complete non-perturbative renormalization prescription for quasi-PDFs, Nucl. Phys. B 923 (2017) 394 [arXiv:1706.00265] [INSPIRE].

    Article  ADS  Google Scholar 

  58. K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Lattice QCD exploration of parton pseudo-distribution functions, Phys. Rev. D 96 (2017) 094503 [arXiv:1706.05373] [INSPIRE].

    ADS  Google Scholar 

  59. E.R. Nocera, H.-W. Lin, F. Olness, K. Orginos and J. Rojo, The PDFLattice2017 workshop: a summary report, PoS(DIS2017)211 [arXiv:1709.01511] [INSPIRE].

  60. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC, Phys. Lett. B 736 (2014) 58 [arXiv:1404.7116] [INSPIRE].

    Article  ADS  Google Scholar 

  63. E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD corrections to t-channel single top-quark production and decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].

    ADS  Google Scholar 

  64. F. Maltoni, T. McElmurry and S. Willenbrock, Inclusive production of a Higgs or Z boson in association with heavy quarks, Phys. Rev. D 72 (2005) 074024 [hep-ph/0505014] [INSPIRE].

  65. ATLAS collaboration, Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Phys. Lett. B 776 (2018) 295 [arXiv:1710.09560] [INSPIRE].

  66. S. Forte, A. Isgrò and G. Vita, Do we need N 3 LO parton distributions?, Phys. Lett. B 731 (2014) 136 [arXiv:1312.6688] [INSPIRE].

    Article  ADS  Google Scholar 

  67. ATLAS collaboration, Measurements of top-quark pair to Z-boson cross-section ratios at \( \sqrt{s}=13 \) , 8, 7 TeV with the ATLAS detector, JHEP 02 (2017) 117 [arXiv:1612.03636] [INSPIRE].

  68. S. Alekhin et al., HERAFitter, Eur. Phys. J. C 75 (2015) 304 [arXiv:1410.4412] [INSPIRE].

    Article  ADS  Google Scholar 

  69. V. Bertone, S. Carrazza and J. Rojo, APFEL: a PDF evolution library with QED corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Epele, C.A. Garcia Canal and R. Sassot, Role of heavy quarks in light hadron fragmentation, Phys. Rev. D 94 (2016) 034037 [arXiv:1604.08427] [INSPIRE].

    ADS  Google Scholar 

  72. D.P. Anderle, F. Ringer and M. Stratmann, Fragmentation functions at next-to-next-to-leading order accuracy, Phys. Rev. D 92 (2015) 114017 [arXiv:1510.05845] [INSPIRE].

    ADS  Google Scholar 

  73. NNPDF collaboration, V. Bertone et al., A determination of the fragmentation functions of pions, kaons and protons with faithful uncertainties, Eur. Phys. J. C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].

  74. ZEUS, H1 collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e ± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].

  75. ZEUS, H1 collaboration, H. Abramowicz et al., Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ep Scattering at HERA, Eur. Phys. J. C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].

  76. H1 collaboration, F.D. Aaron et al., Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA, Eur. Phys. J. C 65 (2010) 89 [arXiv:0907.2643] [INSPIRE].

  77. ZEUS collaboration, H. Abramowicz et al., Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass, JHEP 09 (2014) 127 [arXiv:1405.6915] [INSPIRE].

  78. C.W. Bauer, N. Ferland and B.R. Webber, Standard model parton distributions at very high energies, JHEP 08 (2017) 036 [arXiv:1703.08562] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081, HV Amsterdam, The Netherlands

    Valerio Bertone

  2. Nikhef, Science Park 105, NL-1098, XG Amsterdam, The Netherlands

    Valerio Bertone

  3. DESY Hamburg, Notkestrasse 85, D-22609, Hamburg, Germany

    Alexandre Glazov

  4. Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.

    Alexander Mitov & Andrew S. Papanastasiou

  5. DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, U.K.

    Maria Ubiali

Authors
  1. Valerio Bertone
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexandre Glazov
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alexander Mitov
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Andrew S. Papanastasiou
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Maria Ubiali
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Valerio Bertone.

Additional information

ArXiv ePrint: 1711.03355

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertone, V., Glazov, A., Mitov, A. et al. Heavy-flavor parton distributions without heavy-flavor matching prescriptions. J. High Energ. Phys. 2018, 46 (2018). https://doi.org/10.1007/JHEP04(2018)046

Download citation

  • Received: 05 February 2018

  • Accepted: 05 April 2018

  • Published: 10 April 2018

  • DOI: https://doi.org/10.1007/JHEP04(2018)046

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering (Phenomenology)
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature