Advertisement

Resurgence and hydrodynamic attractors in Gauss-Bonnet holography

  • Jorge Casalderrey-Solana
  • Nikola I. Gushterov
  • Ben Meiring
Open Access
Regular Article - Theoretical Physics

Abstract

We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of \( \mathcal{N}=4 \) Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.

Keywords

Holography and quark-gluon plasmas AdS-CFT Correspondence QuarkGluon Plasma 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    STAR collaboration, K.H. Ackermann et al., Elliptic flow in Au + Au collisions at \( \sqrt{s_{\mathrm{NN}}}=130 \) GeV, Phys. Rev. Lett. 86 (2001) 402 [nucl-ex/0009011] [INSPIRE].
  2. [2]
    PHENIX collaboration, S.S. Adler et al., Elliptic flow of identified hadrons in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, Phys. Rev. Lett. 91 (2003) 182301 [nucl-ex/0305013] [INSPIRE].
  3. [3]
    PHOBOS collaboration, B.B. Back et al., Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 72 (2005) 051901 [nucl-ex/0407012] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle production in \( \sqrt{s_{NN}}=2.76 \) TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907 [arXiv:1203.3087] [INSPIRE].
  5. [5]
    CMS collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Rev. C 87 (2013) 014902 [arXiv:1204.1409] [INSPIRE].
  6. [6]
    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].
  7. [7]
    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [INSPIRE].
  8. [8]
    D. Teaney, J. Lauret and E.V. Shuryak, A hydrodynamic description of heavy ion collisions at the SPS and RHIC, nucl-th/0110037 [INSPIRE].
  9. [9]
    T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Lett. B 636 (2006) 299 [nucl-th/0511046] [INSPIRE].
  10. [10]
    B. Schenke, S. Jeon and C. Gale, Elliptic and triangular flow in event-by-event (3 + 1)D viscous hydrodynamics, Phys. Rev. Lett. 106 (2011) 042301 [arXiv:1009.3244] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Hirano, P. Huovinen and Y. Nara, Elliptic flow in Pb+Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV: hybrid model assessment of the first data, Phys. Rev. C 84 (2011) 011901 [arXiv:1012.3955] [INSPIRE].
  12. [12]
    C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    CMS collaboration, Observation of long-range near-side angular correlations in proton-proton collisions at the LHC, JHEP 09 (2010) 091 [arXiv:1009.4122] [INSPIRE].
  14. [14]
    ATLAS collaboration, Observation of long-range elliptic azimuthal anisotropies in \( \sqrt{s}=13 \) and 2.76 TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 116 (2016) 172301 [arXiv:1509.04776] [INSPIRE].
  15. [15]
    CMS collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765 (2017) 193 [arXiv:1606.06198] [INSPIRE].
  16. [16]
    P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies, Phys. Rev. C 85 (2012) 014911 [arXiv:1112.0915] [INSPIRE].ADSGoogle Scholar
  17. [17]
    I. Kozlov, M. Luzum, G. Denicol, S. Jeon and C. Gale, Transverse momentum structure of pair correlations as a signature of collective behavior in small collision systems, arXiv:1405.3976 [INSPIRE].
  18. [18]
    R.D. Weller and P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at \( \sqrt{s}=5.02 \) TeV, Phys. Lett. B 774 (2017) 351 [arXiv:1701.07145] [INSPIRE].
  19. [19]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Attems et al., Holographic Collisions in Non-conformal Theories, JHEP 01 (2017) 026 [arXiv:1604.06439] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.P. Heller, R.A. Janik and P. Witaszczyk, Hydrodynamic gradient expansion in gauge theory plasmas, Phys. Rev. Lett. 110 (2013) 211602 [arXiv:1302.0697] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M.P. Heller and M. Spalinski, Hydrodynamics beyond the gradient expansion: resurgence and resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Basar and G.V. Dunne, Hydrodynamics, resurgence and transasymptotics, Phys. Rev. D 92 (2015) 125011 [arXiv:1509.05046] [INSPIRE].ADSGoogle Scholar
  28. [28]
    I. Aniceto and M. Spaliński, Resurgence in extended hydrodynamics, Phys. Rev. D 93 (2016) 085008 [arXiv:1511.06358] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    M.P. Heller, A. Kurkela, M. Spalinski and V. Svensson, Hydrodynamic series and hydrodynamization of expanding plasma in kinetic theory, arXiv:1609.04803 [INSPIRE].
  30. [30]
    G.S. Denicol and J. Noronha, Divergence of the Chapman-Enskog expansion in relativistic kinetic theory, arXiv:1608.07869 [INSPIRE].
  31. [31]
    P. Romatschke, Relativistic fluid dynamics far from local equilibrium, Phys. Rev. Lett. 120 (2018) 012301 [arXiv:1704.08699] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys. 118 (1979) 341 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R. Baier et al., Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    G.S. Denicol and J. Noronha, Analytical attractor and the divergence of the slow-roll expansion in relativistic hydrodynamics, arXiv:1711.01657 [INSPIRE].
  35. [35]
    M. Strickland, J. Noronha and G. Denicol, Anisotropic nonequilibrium hydrodynamic attractor, Phys. Rev. D 97 (2018) 036020 [arXiv:1709.06644] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Spaliński, On the hydrodynamic attractor of Yang-Mills plasma, Phys. Lett. B 776 (2018) 468 [arXiv:1708.01921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Romatschke, Relativistic hydrodynamic attractors with broken symmetries: non-conformal and non-homogeneous, JHEP 12 (2017) 079 [arXiv:1710.03234] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    A. Behtash, C.N. Cruz-Camacho and M. Martinez, Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow, Phys. Rev. D 97 (2018) 044041 [arXiv:1711.01745] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    J. Pawelczyk and S. Theisen, AdS 5 × S 5 black hole metric at O(alpha-prime**3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    S. Waeber, A. Schäfer, A. Vuorinen and L.G. Yaffe, Finite coupling corrections to holographic predictions for hot QCD, JHEP 11 (2015) 087 [arXiv:1509.02983] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Grozdanov, N. Kaplis and A.O. Starinets, From strong to weak coupling in holographic models of thermalization, JHEP 07 (2016) 151 [arXiv:1605.02173] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S. Grozdanov and A.O. Starinets, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP 03 (2017) 166 [arXiv:1611.07053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    S.A. Stricker, Holographic thermalization in N = 4 Super Yang-Mills theory at finite coupling, Eur. Phys. J. C 74 (2014) 2727 [arXiv:1307.2736] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Steineder, S.A. Stricker and A. Vuorinen, Probing the pattern of holographic thermalization with photons, JHEP 07 (2013) 014 [arXiv:1304.3404] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Grozdanov and W. van der Schee, Coupling constant corrections in a holographic model of heavy ion collisions, Phys. Rev. Lett. 119 (2017) 011601 [arXiv:1610.08976] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Andrade, J. Casalderrey-Solana and A. Ficnar, Holographic isotropisation in Gauss-Bonnet gravity, JHEP 02 (2017) 016 [arXiv:1610.08987] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    B.S. DiNunno, S. Grozdanov, J.F. Pedraza and S. Young, Holographic constraints on Bjorken hydrodynamics at finite coupling, JHEP 10 (2017) 110 [arXiv:1707.08812] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP 11 (2015) 109 [arXiv:1508.05303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    T. Andrade, E. Caceres and C. Keeler, Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity, Class. Quant. Grav. 34 (2017) 135003 [arXiv:1610.06078] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    R.A. Konoplya and A. Zhidenko, Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling, JHEP 09 (2017) 139 [arXiv:1705.07732] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee and Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031 [arXiv:1512.05347] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev. D 27 (1983) 140 [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Jeon and U. Heinz, Introduction to hydrodynamics, Int. J. Mod. Phys. E 24 (2015) 1530010 [arXiv:1503.03931] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    P. Romatschke, Relativistic viscous fluid dynamics and non-equilibrium entropy, Class. Quant. Grav. 27 (2010) 025006 [arXiv:0906.4787] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].ADSGoogle Scholar
  65. [65]
    P. Benincasa, A. Buchel, M.P. Heller and R.A. Janik, On the supergravity description of boost invariant conformal plasma at strong coupling, Phys. Rev. D 77 (2008) 046006 [arXiv:0712.2025] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    S. Kinoshita, S. Mukohyama, S. Nakamura and K.-y. Oda, A holographic dual of Bjorken flow, Prog. Theor. Phys. 121 (2009) 121 [arXiv:0807.3797] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  67. [67]
    G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP 10 (2009) 043 [arXiv:0906.4423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [INSPIRE].
  70. [70]
    D. Dorigoni, An introduction to resurgence, trans-series and alien calculus, arXiv:1411.3585 [INSPIRE].
  71. [71]
    G. Dunne, Resurgence and trans-series in quantum theories, lectures given at the Schladming Winter School, March 1–6, Schladming, Austria (2015).Google Scholar
  72. [72]
    W. Florkowski, M.P. Heller and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    H.S. Yamada and K.S. Ikeda, A numerical test of Padé approximation for some functions with singularity, arXiv:1308.4453.
  74. [74]
    P. Romatschke, Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions, Eur. Phys. J. C 76 (2016) 352 [arXiv:1512.02641] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M.P. Heller and V. Svensson, How does relativistic kinetic theory remember about initial conditions?, arXiv:1802.08225.

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations