Advertisement

SU(1, 1|N) superconformal mechanics with fermionic gauge symmetry

  • Dmitry ChernyavskyEmail author
Open Access
Regular Article - Theoretical Physics
  • 82 Downloads

Abstract

We study superpaticle models with fermionic gauge symmetry on the coset spaces of the SU(1, 1|N) supergroup. We first construct SU(1, 1|N) supersymmetric extension of a particle on AdS2 possessing the κ-symmetry. Including angular degrees of freedom and extending this model to a superparticle on the AdS2 × ℂℙN − 1 background with two-form flux, one breaks the κ-symmetry down to a fermionic gauge symmetry with one parameter. A link of the background field configuration to the near horizon black hole geometries is discussed.

Keywords

Superspaces Gauge Symmetry Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend and A. Van Proeyen, Black holes and superconformal mechanics, Phys. Rev. Lett. 81 (1998) 4553 [hep-th/9804177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Astorino, S. Cacciatori, D. Klemm and D. Zanon, AdS 2 supergravity and superconformal quantum mechanics, Annals Phys. 304 (2003) 128 [hep-th/0212096] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Cacciatori, D. Klemm and D. Zanon, W(infinity) algebras, conformal mechanics and black holes, Class. Quant. Grav. 17 (2000) 1731 [hep-th/9910065] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    G.W. Gibbons and P.K. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [hep-th/9812034] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J.A. de Azcarraga, J.M. Izquierdo, J.C. Perez Bueno and P.K. Townsend, Superconformal mechanics and nonlinear realizations, Phys. Rev. D 59 (1999) 084015 [hep-th/9810230] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    N. Wyllard, (Super)conformal many body quantum mechanics with extended supersymmetry, J. Math. Phys. 41 (2000) 2826 [hep-th/9910160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A.V. Galajinsky, Comments on N = 4 superconformal extension of the Calogero model, Mod. Phys. Lett. A 18 (2003) 1493 [hep-th/0302156] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Bellucci, A.V. Galajinsky and E. Latini, New insight into WDVV equation, Phys. Rev. D 71 (2005) 044023 [hep-th/0411232] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Anabalon, J. Gomis, K. Kamimura and J. Zanelli, N = 4 superconformal mechanics as a non linear realization, JHEP 10 (2006) 068 [hep-th/0607124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    F. Delduc and E. Ivanov, Gauging N = 4 supersymmetric mechanics II: (1,4,3) models from the (4,4,0) ones, Nucl. Phys. B 770 (2007) 179 [hep-th/0611247] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Bellucci, S. Krivonos and A. Sutulin, N = 4 supersymmetric 3-particles Calogero model, Nucl. Phys. B 805 (2008) 24 [arXiv:0805.3480] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Galajinsky, O. Lechtenfeld and K. Polovnikov, N = 4 mechanics, WDVV equations and roots, JHEP 03 (2009) 113 [arXiv:0802.4386] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Fedoruk, E. Ivanov and O. Lechtenfeld, Supersymmetric Calogero models by gauging, Phys. Rev. D 79 (2009) 105015 [arXiv:0812.4276] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    S. Fedoruk, E. Ivanov and O. Lechtenfeld, Superconformal Mechanics, J. Phys. A 45 (2012) 173001 [arXiv:1112.1947] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    N.B. Copland, S.M. Ko and J.-H. Park, Superconformal Yang-Mills quantum mechanics and Calogero model with OSp(N—2,R) symmetry, JHEP 07 (2012) 076 [arXiv:1205.3869] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    E. Ivanov, S. Krivonos and O. Lechtenfeld, New variant of N = 4 superconformal mechanics, JHEP 03 (2003) 014 [hep-th/0212303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    E. Ivanov, S. Krivonos and J. Niederle, Conformal and superconformal mechanics revisited, Nucl. Phys. B 677 (2004) 485 [hep-th/0210196] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    E. Ivanov, S. Krivonos and O. Lechtenfeld, N = 4, d = 1 supermultiplets from nonlinear realizations of D(2, 1; α), Class. Quant. Grav. 21 (2004) 1031 [hep-th/0310299] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Bellucci and S. Krivonos, Potentials in N = 4 superconformal mechanics, Phys. Rev. D 80 (2009) 065022 [arXiv:0905.4633] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    S. Fedoruk, E. Ivanov and O. Lechtenfeld, New D(2, 1; α) Mechanics with Spin Variables, JHEP 04 (2010) 129 [arXiv:0912.3508] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E. Ivanov and S. Sidorov, Deformed Supersymmetric Mechanics, Class. Quant. Grav. 31 (2014) 075013 [arXiv:1307.7690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Fedoruk and E. Ivanov, New realizations of the supergroup D(2, 1; α) in \( \mathcal{N}=4 \) superconformal mechanics, JHEP 10 (2015) 087 [arXiv:1507.08584] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Kozyrev, S. Krivonos, O. Lechtenfeld, A. Nersessian and A. Sutulin, Curved Witten-Dijkgraaf-Verlinde-Verlinde equation and \( \mathcal{N}=4 \) mechanics, Phys. Rev. D 96 (2017) 101702 [arXiv:1710.00884] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Kozyrev, S. Krivonos, O. Lechtenfeld, A. Nersessian and A. Sutulin, \( \mathcal{N}=4 \) supersymmetric mechanics on curved spaces, arXiv:1711.08734 [INSPIRE].
  25. [25]
    J.-G. Zhou, Super 0-brane and GS superstring actions on AdS 2 × S 2, Nucl. Phys. B 559 (1999) 92 [hep-th/9906013] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Kreuzer and J.-G. Zhou, Killing gauge for the 0-brane on AdS 2 × S 2 coset superspace, Phys. Lett. B 472 (2000) 309 [hep-th/9910067] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev. D 66 (2002) 086001 [Erratum ibid. D 67 (2003) 049901] [hep-th/0206126] [INSPIRE].
  28. [28]
    S. Bellucci, A. Galajinsky, E. Ivanov and S. Krivonos, AdS 2 /CFT 1 , canonical transformations and superconformal mechanics, Phys. Lett. B 555 (2003) 99 [hep-th/0212204] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Galajinsky, Particle dynamics on AdS 2 × S 2 background with two-form flux, Phys. Rev. D 78 (2008) 044014 [arXiv:0806.1629] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Galajinsky, Particle dynamics near extreme Kerr throat and supersymmetry, JHEP 11 (2010) 126 [arXiv:1009.2341] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S. Bellucci and S. Krivonos, N = 2 supersymmetric particle near extreme Kerr throat, JHEP 10 (2011) 014 [arXiv:1106.4453] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Galajinsky, \( \mathcal{N}=4 \) superconformal mechanics from the SU(2) perspective, JHEP 02 (2015) 091 [arXiv:1412.4467] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A. Galajinsky, Couplings in D(2, 1; α) superconformal mechanics from the SU(2) perspective, JHEP 03 (2017) 054 [arXiv:1702.01955] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D. Chernyavsky, Super 0-brane action on the coset space of D(2, 1; α) supergroup, JHEP 09 (2017) 054 [arXiv:1707.00437] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    E.A. Ivanov, S.O. Krivonos and V.M. Leviant, Geometric superfield approach to superconformal mechanics, J. Phys. A 22 (1989) 4201 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    S. Bellucci, N. Kozyrev, S. Krivonos and A. Sutulin, Symmetries of N = 4 supersymmetric ℂℙn mechanics, J. Phys. A 46 (2013) 275305 [arXiv:1206.0175] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    A. Galajinsky and O. Lechtenfeld, Superconformal SU(1, 1—n) mechanics, JHEP 09 (2016) 114 [arXiv:1606.05230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Bellucci, S. Krivonos and A. Sutulin, CP n supersymmetric mechanics in U(n) background gauge fields, Phys. Rev. D 84 (2011) 065033 [arXiv:1106.2435] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Bellucci and A. Nersessian, (Super)oscillator on CP N and constant magnetic field, Phys. Rev. D 67 (2003) 065013 [Erratum ibid. D 71 (2005) 089901] [hep-th/0211070] [INSPIRE].
  40. [40]
    D.P. Sorokin, Superbranes and superembeddings, Phys. Rept. 329 (2000) 1 [hep-th/9906142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    N. Alonso-Alberca, E. Lozano-Tellechea and T. Ortín, Geometric construction of Killing spinors and supersymmetry algebras in homogeneous space-times, Class. Quant. Grav. 19 (2002) 6009 [hep-th/0208158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Bellucci and S. Krivonos, Supersymmetric mechanics in superspace, Lect. Notes Phys. 698 (2006) 49 [hep-th/0602199] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    P. Pasti, D.P. Sorokin and M. Tonin, On gauge fixed superbrane actions in AdS superbackgrounds, Phys. Lett. B 447 (1999) 251 [hep-th/9809213] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Hakobyan and A. Nersessian, Lobachevsky geometry of (super)conformal mechanics, Phys. Lett. A 373 (2009) 1001 [arXiv:0803.1293] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    T. Okazaki, Membrane Quantum Mechanics, Nucl. Phys. B 890 (2014) 400 [arXiv:1410.8180] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    R. Bertlmann, P. Krammer, Bloch vectors for qudits, J. Phys. A 41 (2008) 235303 [arXiv:0806.1174].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M. Heinze, B. Hoare, G. Jorjadze and L. Megrelidze, Orbit method quantization of the AdS 2 superparticle, J. Phys. A 48 (2015) 315403 [arXiv:1504.04175] [INSPIRE].ADSzbMATHGoogle Scholar
  50. [50]
    M. Heinze and G. Jorjadze, Quantization of the AdS3 superparticle on OSP(1|2)2 /SL(2, ℝ), Nucl. Phys. B 915 (2017) 44 [arXiv:1610.03519] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of PhysicsTomsk Polytechnic UniversityTomskRussia

Personalised recommendations