Skip to main content

Wald type analysis for spin-one fields in three dimensions

A preprint version of the article is available at arXiv.

Abstract

We revisit Wald’s analysis of [5] in the context of spin-one fields in three dimensions. A key technical difference from Wald’s is the role played by the three dimensional completely antisymmetric tensor. We show how this changes the analysis as well as the result from that of [5].

References

  1. S. Weinberg, Photons and gravitons in perturbation theory: Derivation of Maxwells and Einsteins equations, Phys. Rev. 138 (1965) B988 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. R.P. Feynman, F.B. Morinigo and W.G. Wagner, Feynman lectures on gravitation, Eur. J. Phys. 24 (2003) 330.

    Article  Google Scholar 

  3. S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].

  4. D.G. Boulware and S. Deser, Classical General Relativity Derived from Quantum Gravity, Annals Phys. 89 (1975) 193 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. R.M. Wald, Spin-2 Fields and General Covariance, Phys. Rev. D 33 (1986) 3613 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. S. Deser, Gravity From Selfinteraction in a Curved Background, Class. Quant. Grav. 4 (1987) L99 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. D. Bai and Y.-H. Xing, On the uniqueness of ghost-free special gravity, arXiv:1702.05756 [INSPIRE].

  8. D. Bai and Y.-H. Xing, Special Gravity as Alternatives for Interacting Massless Gravitons, arXiv:1610.00241 [INSPIRE].

  9. K. Hinterbichler, Ghost-Free Derivative Interactions for a Massive Graviton, JHEP 10 (2013)102 [arXiv:1305.7227] [INSPIRE].

  10. I. Gullu, Massive Higher Derivative Gravity Theories, arXiv:1201.6504 [INSPIRE].

  11. P. Benincasa and E. Conde, Exploring the S-matrix of Massless Particles, Phys. Rev. D 86 (2012)025007 [arXiv:1108.3078] [INSPIRE].

  12. K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    ADS  Article  Google Scholar 

  13. Yu. M. Zinoviev, On massive spin 2 electromagnetic interactions, Nucl. Phys. B 821 (2009) 431 [arXiv:0901.3462] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [INSPIRE].

  15. D. Blas, Gauge Symmetry and Consistent Spin-Two Theories, J. Phys. A 40 (2007) 6965 [hep-th/0701049] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. C. Bizdadea, E.M. Cioroianu, A.C. Lungu and S.O. Saliu, No multi-graviton theories in the presence of a Dirac field, JHEP 02 (2005) 016 [arXiv:0704.2321] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A no go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. S.C. Anco, On multigraviton and multigravitino gauge theories, Class. Quant. Grav. 19 (2002) 6445 [gr-qc/0303033] [INSPIRE].

  19. C. Bizdadea, E.M. Cioroianu, M.T. Miauta, I. Negru and S.O. Saliu, Lagrangian cohomological couplings among vector fields and matter fields, Annalen Phys. 10 (2001) 921 [hep-th/0201073] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. C. Bizdadea, M.T. Miauta and S.O. Saliu, On the Lagrangian derivation of the interactions between a Chern-Simons term and a complex scalar field, Acta Phys. Polon. B 32 (2001) 1225 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, No consistent cross interactions for a collection of massless spin-2 fields, hep-th/0009109 [INSPIRE].

  23. G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories, Phys. Rept. 338 (2000) 439 [hep-th/0002245] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. C. Bizdadea, Note on two-dimensional nonlinear gauge theories, Mod. Phys. Lett. A 15 (2000)2047 [hep-th/0201059] [INSPIRE].

  25. M. Henneaux, Consistent interactions between gauge fields: The cohomological approach, Contemp. Math. 219 (1998) 93 [hep-th/9712226] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. A. Hindawi, B.A. Ovrut and D. Waldram, Consistent spin two coupling and quadratic gravitation, Phys. Rev. D 53 (1996) 5583 [hep-th/9509142] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in Einstein Yang-Mills theory, Nucl. Phys. B 455 (1995) 357 [hep-th/9505173] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. G. Barnich, M. Henneaux and R. Tatar, Consistent interactions between gauge fields and the local BRST cohomology: The example of Yang-Mills models, Int. J. Mod. Phys. D 3 (1994) 139 [hep-th/9307155] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. T. Damour, S. Deser and J.G. McCarthy, Nonsymmetric gravity theories: Inconsistencies and a cure, Phys. Rev. D 47 (1993) 1541 [gr-qc/9207003] [INSPIRE].

  31. S. Deser and Z. Yang, Inconsistency of Spin 4-Spin 2 Gauge Field Couplings, Class. Quant. Grav. 7 (1990) 1491 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. K.R. Heiderich and W.G. Unruh, Nonlinear, noncovariant spin two theories, Phys. Rev. D 42 (1990)2057 [INSPIRE].

  33. K. Heiderich and W. Unruh, Spin-2 Fields, General Covariance, and Conformal Invariance, Phys. Rev. D 38 (1988) 490 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. M. Reuter, Consistent Interaction for Infinitely Many Massless Spin Two Fields by Dimensional Reduction, Phys. Lett. B 205 (1988) 511 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. T. Damour and S. Deser, Higher Derivative Interactions of Higher Spin Gauge Fields, Class. Quant. Grav. 4 (1987) L95 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. S.C. Anco, Gauge theory deformations and novel Yang-Mills Chern-Simons field theories with torsion, Int. J. Geom. Meth. Mod. Phys. 1 (2004) 493 [math-ph/0407026] [INSPIRE].

  37. S.C. Anco, New spin-one gauge theory in three-dimensions, J. Math. Phys. 36 (1995) 6553 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. S.C. Anco, Novel generalization of three-dimensional Yang-Mills theory, J. Math. Phys. 38 (1997) 3399 [math-ph/0209050] [INSPIRE].

  39. S.C. Anco, Nonlinear gauge theories of a spin-two field and a spin-three-halves field, Annals Phys. 270 (1998) 52.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. S.C. Anco, Parity violating spin-two gauge theories, Phys. Rev. D 67 (2003) 124007 [gr-qc/0305026] [INSPIRE].

  41. M.P. Hertzberg and M. Sandora, General Relativity from Causality, arXiv:1702.07720 [INSPIRE].

  42. A.A. Tseytlin, On gauge theories for nonsemisimple groups, Nucl. Phys. B 450 (1995) 231 [hep-th/9505129] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  43. S. Mukhi, Unravelling the novel Higgs mechanism in (2+1)d Chern-Simons theories, JHEP 12 (2011) 083 [arXiv:1110.3048] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby Ezhuthachan.

Additional information

ArXiv ePrint: 1610.00418

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bera, N., Das, S. & Ezhuthachan, B. Wald type analysis for spin-one fields in three dimensions. J. High Energ. Phys. 2017, 160 (2017). https://doi.org/10.1007/JHEP04(2017)160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2017)160

Keywords

  • Gauge Symmetry
  • Chern-Simons Theories