Boosted dark matter at the deep underground neutrino experiment

Abstract

We investigate the detection prospects of a non-standard dark sector in the context of boosted dark matter. We consider a scenario where two stable particles have a large mass difference and the heavier particle accounts for most of dark matter in our current universe. The heavier candidate is assumed to have no interaction with the standard model particles at tree-level, hence evading existing constraints. Although subdominant, the lighter dark matter particles are efficiently produced via pair-annihilation of the heavier ones in the center of the Galaxy or the Sun. The large Lorentz boost enables detection of the non-minimal dark sector in large volume terrestrial experiments via exchange of a light dark photon with electrons or nuclei. Various experiments designed for neutrino physics and proton decay are examined in detail, including Super-K and Hyper-K. In this study, we focus on the sensitivity of the far detector at the Deep Underground Neutrino Experiment for boosted dark matter produced in the center of the Sun, and compare our findings with recent results for boosted dark matter produced in the galactic center.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Arrenberg et al., Working Group Report: Dark Matter Complementarity, arXiv:1310.8621 [INSPIRE].

  2. [2]

    W.J.G. de Blok, The Core-Cusp Problem, Adv. Astron. 2010 (2010) 789293 [arXiv:0910.3538] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, The Milky Way’s bright satellites as an apparent failure of LCDM, Mon. Not. Roy. Astron. Soc. 422 (2012) 1203 [arXiv:1111.2048] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    M.R. Lovell, C.S. Frenk, V.R. Eke, A. Jenkins, L. Gao and T. Theuns, The properties of warm dark matter haloes, Mon. Not. Roy. Astron. Soc. 439 (2014) 300 [arXiv:1308.1399] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].

  7. [7]

    M. Rocha et al., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].

  9. [9]

    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J. Zavala, M. Vogelsberger and M.G. Walker, Constraining Self-Interacting Dark Matter with the Milky Way’s dwarf spheroidals, Monthly Notices of the Royal Astronomical Society: Letters 431 (2013) L20 [arXiv:1211.6426] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  12. [12]

    G. Bélanger and J.-C. Park, Assisted freeze-out, JCAP 03 (2012) 038 [arXiv:1112.4491] [INSPIRE].

    Article  Google Scholar 

  13. [13]

    G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Impact of semi-annihilations on dark matter phenomenology — an example of Z N symmetric scalar dark matter, JCAP 04 (2012) 010 [arXiv:1202.2962] [INSPIRE].

    Article  Google Scholar 

  14. [14]

    A. DiFranzo and G. Mohlabeng, Multi-component Dark Matter through a Radiative Higgs Portal, JHEP 01 (2017) 080 [arXiv:1610.07606] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J. Huang and Y. Zhao, Dark Matter Induced Nucleon Decay: Model and Signatures, JHEP 02 (2014) 077 [arXiv:1312.0011] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    K. Agashe, Y. Cui, L. Necib and J. Thaler, (In)direct Detection of Boosted Dark Matter, JCAP 10 (2014) 062 [arXiv:1405.7370] [INSPIRE].

  17. [17]

    J. Berger, Y. Cui and Y. Zhao, Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors, JCAP 02 (2015) 005 [arXiv:1410.2246] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    K. Kong, G. Mohlabeng and J.-C. Park, Boosted dark matter signals uplifted with self-interaction, Phys. Lett. B 743 (2015) 256 [arXiv:1411.6632] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Kopp, J. Liu and X.-P. Wang, Boosted Dark Matter in IceCube and at the Galactic Center, JHEP 04 (2015) 105 [arXiv:1503.02669] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    A. Bhattacharya, R. Gandhi and A. Gupta, The Direct Detection of Boosted Dark Matter at High Energies and PeV events at IceCube, JCAP 03 (2015) 027 [arXiv:1407.3280] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    L. Necib, J. Moon, T. Wongjirad and J.M. Conrad, Boosted Dark Matter at Neutrino Experiments, Phys. Rev. D 95 (2017) 075018 [arXiv:1610.03486] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].

  23. [23]

    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.02984 [INSPIRE].

  24. [24]

    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05471 [INSPIRE].

  25. [25]

    DUNE collaboration, J. Strait et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05823 [INSPIRE].

  26. [26]

    L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [INSPIRE].

    Google Scholar 

  27. [27]

    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    J.-H. Huh, J.E. Kim, J.-C. Park and S.C. Park, Galactic 511 keV line from MeV milli-charged dark matter, Phys. Rev. D 77 (2008) 123503 [arXiv:0711.3528] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  31. [31]

    J.-C. Park and S.C. Park, Radiatively decaying scalar dark matter through U(1) mixings and the Fermi 130 GeV gamma-ray line, Phys. Lett. B 718 (2013) 1401 [arXiv:1207.4981] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    G. Bélanger, A. Goudelis, J.-C. Park and A. Pukhov, Isospin-violating dark matter from a double portal, JCAP 02 (2014) 020 [arXiv:1311.0022] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. [33]

    NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π 0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].

  34. [34]

    P. Ilten, J. Thaler, M. Williams and W. Xue, Dark photons from charm mesons at LHCb, Phys. Rev. D 92 (2015) 115017 [arXiv:1509.06765] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    KLOE-2 collaboration, A. Anastasi et al., Limit on the production of a new vector boson in e + e → Uγ, U → π + π with the KLOE experiment, Phys. Lett. B 757 (2016) 356 [arXiv:1603.06086] [INSPIRE].

  36. [36]

    NA64 collaboration, D. Banerjee et al., Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].

  37. [37]

    Super-Kamiokande collaboration, M. Fechner et al., Kinematic reconstruction of atmospheric neutrino events in a large water Cherenkov detector with proton identification, Phys. Rev. D 79 (2009) 112010 [arXiv:0901.1645] [INSPIRE].

  38. [38]

    Hyper-Kamiokande Working Group collaboration, E. Kearns et al., Hyper-Kamiokande Physics Opportunities, arXiv:1309.0184 [INSPIRE].

  39. [39]

    T.K. Gaisser and M. Honda, Flux of atmospheric neutrinos, Ann. Rev. Nucl. Part. Sci. 52 (2002) 153 [hep-ph/0203272] [INSPIRE].

  40. [40]

    Super-Kamiokande collaboration, K. Bays et al., Supernova Relic Neutrino Search at Super-Kamiokande, Phys. Rev. D 85 (2012) 052007 [arXiv:1111.5031] [INSPIRE].

  41. [41]

    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].

  42. [42]

    L.K. Pik, Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande, Ph.D. Thesis, University of Tokyo (2012) [INSPIRE].

  43. [43]

    M.R. Dziomba, A Study of neutrino Oscillation Models with Super-Kamiokande Atmospheric Neutrino Data, Ph.D. Thesis, University of Washington, Seattle (2012) [INSPIRE].

  44. [44]

    Super-Kamiokande collaboration, E. Richard et al., Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects and solar modulation, Phys. Rev. D 94 (2016) 052001 [arXiv:1510.08127] [INSPIRE].

  45. [45]

    Hyper-Kamiokande proto-collaboration, K. Abe et al., Physics Potentials with the Second Hyper-Kamiokande Detector in Korea, arXiv:1611.06118 [INSPIRE].

  46. [46]

    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].

  47. [47]

    J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

  48. [48]

    M. Kaplinghat, T. Linden and H.-B. Yu, Galactic Center Excess in γ Rays from Annihilation of Self-Interacting Dark Matter, Phys. Rev. Lett. 114 (2015) 211303 [arXiv:1501.03507] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    M. Kaplinghat, R.E. Keeley, T. Linden and H.-B. Yu, Tying Dark Matter to Baryons with Self-interactions, Phys. Rev. Lett. 113 (2014) 021302 [arXiv:1311.6524] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    J.H. Kim, K. Kong, S.J. Lee and G. Mohlabeng, Probing TeV scale Top-Philic Resonances with Boosted Top-Tagging at the High Luminosity LHC, Phys. Rev. D 94 (2016) 035023 [arXiv:1604.07421] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    DAMIC collaboration, J.R.T. de Mello Neto et al., The DAMIC dark matter experiment, PoS(ICRC2015)1221 [arXiv:1510.02126] [INSPIRE].

  53. [53]

    R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    C.-S. Chen, F.-F. Lee, G.-L. Lin and Y.-H. Lin, Probing Dark Matter Self-Interaction in the Sun with IceCube-PINGU, JCAP 10 (2014) 049 [arXiv:1408.5471] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Chul Park.

Additional information

ArXiv ePrint: 1611.09866

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alhazmi, H., Kong, K., Mohlabeng, G. et al. Boosted dark matter at the deep underground neutrino experiment. J. High Energ. Phys. 2017, 158 (2017). https://doi.org/10.1007/JHEP04(2017)158

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Solar and Atmospheric Neutrinos