Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Simplified phenomenology for colored dark sectors
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Strongly interacting dark sectors in the early Universe and at the LHC through a simplified portal

27 January 2020

Elias Bernreuther, Felix Kahlhoefer, … Patrick Tunney

A flavoured dark sector

10 August 2018

Sophie Renner & Pedro Schwaller

Broadening dark matter searches at the LHC: mono-X versus darkonium channels

04 October 2018

Anirudh Krovi, Ian Low & Yue Zhang

SIMPly add a dark photon

28 March 2023

Pieter Braat & Marieke Postma

Dark QED from inflation

15 November 2021

Asimina Arvanitaki, Savas Dimopoulos, … Jedidiah O. Thompson

Model-independent constraints with extended dark matter EFT

27 October 2020

Tommi Alanne, Giorgio Arcadi, … Stefan Vogl

Impact of Sommerfeld effect and bound state formation in simplified t-channel dark matter models

16 August 2022

Mathias Becker, Emanuele Copello, … Dipan Sengupta

LHC phenomenology of dark matter with a color-octet partner

09 July 2018

Alessandro Davoli, Andrea De Simone, … Alessandro Morandini

Fermionic singlet dark matter in one-loop solutions to the $$R_K$$ R K anomaly: a systematic study

01 December 2021

Mathias Becker, Dominik Döring, … Heinrich Päs

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 20 April 2017

Simplified phenomenology for colored dark sectors

  • Sonia El Hedri1,
  • Anna Kaminska1,
  • Maikel de Vries1 &
  • …
  • Jose Zurita2,3 

Journal of High Energy Physics volume 2017, Article number: 118 (2017) Cite this article

  • 238 Accesses

  • 28 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  2. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

  3. D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].

  4. S.P. Liew, M. Papucci, A. Vichi and K.M. Zurek, Mono-X Versus Direct Searches: Simplified Models for Dark Matter at the LHC, arXiv:1612.00219 [INSPIRE].

  5. H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89 (2014) 115014 [arXiv:1308.0592] [INSPIRE].

    ADS  Google Scholar 

  6. A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified Models for Dark Matter Interacting with Quarks, JHEP 11 (2013) 014 [Erratum ibid. 01 (2014) 162] [arXiv:1308.2679] [INSPIRE].

  7. J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].

  8. M.R. Buckley, D. Feld and D. Goncalves, Scalar Simplified Models for Dark Matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].

    ADS  Google Scholar 

  9. P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].

    ADS  Google Scholar 

  10. M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with t-channel mediators, Int. J. Mod. Phys. D 24 (2015) 1530019 [arXiv:1503.01500] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].

    Article  Google Scholar 

  12. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

  13. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  14. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Beniwal, F. Rajec, C. Savage, P. Scott, C. Weniger, M. White et al., Combined analysis of effective Higgs portal dark matter models, Phys. Rev. D 93 (2016) 115016 [arXiv:1512.06458] [INSPIRE].

    ADS  Google Scholar 

  16. S.A. Malik et al., Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments, Phys. Dark Univ. 9-10 (2015) 51 [arXiv:1409.4075] [INSPIRE].

    Article  Google Scholar 

  17. A. Alves, S. Profumo and F.S. Queiroz, The dark Z ′ portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z ′ Portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].

    ADS  Google Scholar 

  19. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].

    Article  ADS  Google Scholar 

  20. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  21. XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].

  22. T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  24. M.J. Baker et al., The Coannihilation Codex, JHEP 12 (2015) 120 [arXiv:1510.03434] [INSPIRE].

    ADS  Google Scholar 

  25. J. Ellis, F. Luo and K.A. Olive, Gluino Coannihilation Revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S.P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of Coannihilation with a Scalar Top Partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].

    ADS  Google Scholar 

  28. A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for Dark Matter Searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].

    Article  Google Scholar 

  29. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys. 403 (1931) 257.

    Article  MATH  Google Scholar 

  30. S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Cassel, D.M. Ghilencea and G.G. Ross, Electroweak and Dark Matter Constraints on a Z-prime in Models with a Hidden Valley, Nucl. Phys. B 827 (2010) 256 [arXiv:0903.1118] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. R. Iengo, Sommerfeld enhancement: General results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. S. El Hedri, A. Kaminska and M. de Vries, A Sommerfeld Toolbox for Colored Dark Sectors, arXiv:1612.02825 [INSPIRE].

  34. A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, arXiv:1702.01141 [INSPIRE].

  35. G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly Degenerate Gauginos and Dark Matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].

    ADS  Google Scholar 

  36. K. Rolbiecki and K. Sakurai, Constraining compressed supersymmetry using leptonic signatures, JHEP 10 (2012) 071 [arXiv:1206.6767] [INSPIRE].

    Article  ADS  Google Scholar 

  37. P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].

    Article  ADS  Google Scholar 

  38. ATLAS collaboration, Pursuit of new phenomena in final states with high jet multiplicity, high jet masses and missing transverse momentum with ATLAS at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-095 (2016).

  39. CMS Collaboration, Search for new physics in final states with jets and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions with the α T variable, CMS-PAS-SUS-15-005.

  40. ATLAS collaboration, Further searches for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s} \) =13 TeV with the ATLAS detector, ATLAS-CONF-2016-078 (2016).

  41. CMS Collaboration, Search for supersymmetry in events with jets and missing transverse momentum in proton-proton collisions at 13 TeV, CMS-PAS-SUS-16-014.

  42. CMS Collaboration, An inclusive search for new phenomena in final states with one or more jets and missing transverse momentum at 13 TeV with the AlphaT variable, CMS-PAS-SUS-16-016.

  43. ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 392 [arXiv:1605.03814] [INSPIRE].

  44. ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].

  45. CMS collaboration, Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV, Phys. Lett. B 758 (2016) 152 [arXiv:1602.06581] [INSPIRE].

  46. M. Buschmann, S. El Hedri, A. Kaminska, J. Liu, M. de Vries, X.-P. Wang et al., Hunting for dark matter coannihilation by mixing dijet resonances and missing transverse energy, JHEP 09 (2016) 033 [arXiv:1605.08056] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, submitted to Phys. Rept. (2016) [arXiv:1606.00947] [INSPIRE].

  48. R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, arXiv:1606.09408 [INSPIRE].

  49. J. Blumlein, E. Boos and A. Kryukov, Leptoquark pair production in hadronic interactions, Z. Phys. C 76 (1997) 137 [hep-ph/9610408] [INSPIRE].

  50. J.L. Hewett, T.G. Rizzo, S. Pakvasa, H.E. Haber and A. Pomarol, Vector leptoquark production at hadron colliders, in Workshop on Physics at Current Accelerators and the Supercollider, Argonne, Illinois U.S.A., 2-5 June 1993 [hep-ph/9310361] [INSPIRE].

  51. D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].

  52. B.D. Wandelt, R. Dave, G.R. Farrar, P.C. McGuire, D.N. Spergel and P.J. Steinhardt, Selfinteracting dark matter, in Sources and detection of dark matter and dark energy in the universe. Proceedings, 4th International Symposium, DM 2000, Marina del Rey, U.S.A., 23-25 February 2000, pp. 263-274 [astro-ph/0006344] [INSPIRE].

  53. M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].

    Article  ADS  Google Scholar 

  54. N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  55. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  56. M. de Vries, FeynRules Models for Colored Dark Sectors, GitHub repository: https://github.com/MDT-Maikel/FR-CDS.

  57. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  59. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. El Hedri, A. Kaminska and M. de Vries, Mathematica Notebook for Analytic Sommerfeld Corrections, GitHub repository: https://github.com/MDT-Maikel/Sommerfeld.

  63. B. Fornal and T.M.P. Tait, Dark Matter from Unification of Color and Baryon Number, Phys. Rev. D 93 (2016) 075010 [arXiv:1511.07380] [INSPIRE].

    ADS  Google Scholar 

  64. P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].

    Article  ADS  Google Scholar 

  65. P. Fayet, Massive gluinos, Phys. Lett. B 78 (1978) 417 [INSPIRE].

    Article  ADS  Google Scholar 

  66. G.R. Farrar and P. Fayet, Phenomenology of the Production, Decay and Detection of New Hadronic States Associated with Supersymmetry, Phys. Lett. B 76 (1978) 575 [INSPIRE].

    Article  ADS  Google Scholar 

  67. ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].

  68. ATLAS collaboration, Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 072004 [arXiv:1504.05162] [INSPIRE].

  69. ATLAS collaboration, Search for metastable heavy charged particles with large ionization energy loss in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS experiment, Phys. Rev. D 93 (2016)112015 [arXiv:1604.04520] [INSPIRE].

  70. ATLAS collaboration, Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 760 (2016) 647 [arXiv:1606.05129] [INSPIRE].

  71. CMS collaboration, Search for Decays of Stopped Long-Lived Particles Produced in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 151 [arXiv:1501.05603] [INSPIRE].

  72. CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].

  73. P.S. Bhupal Dev, A. Mazumdar and S. Qutub, Constraining Non-thermal and Thermal properties of Dark Matter, Front. in Phys. 2 (2014) 26 [arXiv:1311.5297] [INSPIRE].

    ADS  Google Scholar 

  74. K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev. D 89 (2014) 115021 [arXiv:1403.0715] [INSPIRE].

    ADS  Google Scholar 

  75. M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

  77. C. Chen, New approach to identifying boosted hadronically-decaying particle using jet substructure in its center-of-mass frame, Phys. Rev. D 85 (2012) 034007 [arXiv:1112.2567] [INSPIRE].

    ADS  Google Scholar 

  78. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

  79. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  80. S. Hoeche, F. Krauss, N. Lavesson, L. Lönnblad, M. Mangano, A. Schalicke et al., Matching parton showers and matrix elements, hep-ph/0602031 [INSPIRE].

  81. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].

    Article  ADS  Google Scholar 

  82. J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].

    Article  ADS  Google Scholar 

  83. DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  84. M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].

    Article  ADS  Google Scholar 

  85. A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    Article  ADS  Google Scholar 

  86. W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

  87. D. Kahawala and Y. Kats, Distinguishing spins at the LHC using bound state signals, JHEP 09 (2011) 099 [arXiv:1103.3503] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099, Mainz, Germany

    Sonia El Hedri, Anna Kaminska & Maikel de Vries

  2. Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany

    Jose Zurita

  3. Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology, Engesserstraße 7, D-76128, Karlsruhe, Germany

    Jose Zurita

Authors
  1. Sonia El Hedri
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Anna Kaminska
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Maikel de Vries
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jose Zurita
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jose Zurita.

Additional information

ArXiv ePrint: 1703.00452

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hedri, S., Kaminska, A., de Vries, M. et al. Simplified phenomenology for colored dark sectors. J. High Energ. Phys. 2017, 118 (2017). https://doi.org/10.1007/JHEP04(2017)118

Download citation

  • Received: 13 March 2017

  • Accepted: 07 April 2017

  • Published: 20 April 2017

  • DOI: https://doi.org/10.1007/JHEP04(2017)118

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Phenomenological Models
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.