Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Probing scalar effective field theories with the soft limits of scattering amplitudes

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 04 April 2017
  • Volume 2017, article number 15, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Probing scalar effective field theories with the soft limits of scattering amplitudes
Download PDF
  • Antonio Padilla1,
  • David Stefanyszyn2 &
  • Toby Wilson1 
  • 574 Accesses

  • 29 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We investigate the soft behaviour of scalar effective field theories (EFTs) when there is a number of distinct derivative power counting parameters, ρ 1 < ρ 2 < . . . < ρ Q . We clarify the notion of an enhanced soft limit and use these to extend the scope of on-shell recursion techniques for scalar EFTs. As an example, we perform a detailed study of theories with two power counting parameters, ρ 1 = 1 and ρ 2 = 2, that include the shift symmetric generalised galileons. We demonstrate that the minimally enhanced soft limit uniquely picks out the Dirac-Born-Infeld (DBI) symmetry, including DBI galileons. For the exceptional soft limit we uniquely pick out the special galileon within the class of theories under investigation. We study the DBI galileon amplitudes more closely, verifying the validity of the recursion techniques in generating the six point amplitude, and explicitly demonstrating the invariance of all amplitudes under DBI galileon duality.

Article PDF

Download to read the full article text

Similar content being viewed by others

Matter couplings and equivalence principles for soft scalars

Article Open access 08 July 2020

Nonrelativistic effective field theories with enhanced symmetries and soft behavior

Article Open access 14 March 2022

Lie-algebraic classification of effective theories with enhanced soft limits

Article Open access 11 May 2018
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].

  2. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Kaloper, A. Padilla, P. Saffin and D. Stefanyszyn, Unitarity and the Vainshtein Mechanism, Phys. Rev. D 91 (2015) 045017 [arXiv:1409.3243] [INSPIRE].

    ADS  Google Scholar 

  8. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New Ambitwistor String Theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. P.A.M. Dirac, An Extensible model of the electron, Proc. Roy. Soc. Lond. A 268 (1962) 57 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].

    Article  ADS  Google Scholar 

  15. H. Lüo and C. Wen, Recursion relations from soft theorems, JHEP 03 (2016) 088 [arXiv:1512.06801] [INSPIRE].

    Article  Google Scholar 

  16. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].

    ADS  Google Scholar 

  22. C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].

    Article  Google Scholar 

  23. J. Chagoya and G. Tasinato, A geometrical approach to degenerate scalar-tensor theories, JHEP 02 (2017) 113 [arXiv:1610.07980] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Goon, K. Hinterbichler and M. Trodden, A New Class of Effective Field Theories from Embedded Branes, Phys. Rev. Lett. 106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].

    Article  ADS  Google Scholar 

  25. G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. K. Kampf and J. Novotny, Unification of Galileon Dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k-essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [INSPIRE].

  29. J. Novotny, Geometry of Special Galileon, arXiv:1612.01738 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

    Antonio Padilla & Toby Wilson

  2. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands

    David Stefanyszyn

Authors
  1. Antonio Padilla
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. David Stefanyszyn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Toby Wilson
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to David Stefanyszyn.

Additional information

ArXiv ePrint: 1612.04283

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilla, A., Stefanyszyn, D. & Wilson, T. Probing scalar effective field theories with the soft limits of scattering amplitudes. J. High Energ. Phys. 2017, 15 (2017). https://doi.org/10.1007/JHEP04(2017)015

Download citation

  • Received: 03 January 2017

  • Accepted: 12 March 2017

  • Published: 04 April 2017

  • DOI: https://doi.org/10.1007/JHEP04(2017)015

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Effective Field Theories
  • Global Symmetries
  • Scattering Amplitudes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature