Combination of Run-1 exotic searches in diboson final states at the LHC

Abstract

We perform a statistical combination of the ATLAS and CMS results for the search of a heavy resonance decaying to a pair of vector bosons with the \( \sqrt{s}=8 \) TeV datasets collected at the LHC. We take into account six searches in hadronic and semileptonic final states carried out by the two collaborations. We consider only public information provided by ATLAS and CMS in the HEPDATA database and in papers published in refereed journals. We interpret the combined results within the context of a few benchmark new physics models, such as models predicting the existence of a W′ or a bulk Randall-Sundrum spin-2 resonance, for which we present exclusion limits, significances, p-values and best-fit cross sections. A heavy diboson resonance with a production cross section of ∼4-5 fb and mass between 1.9 and 2.0 TeV is the exotic scenario most consistent with the experimental results. Models in which a heavy resonance decays preferentially to a WW final state are disfavoured.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].

  2. [2]

    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Experimental probes of localized gravity: On and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    Tevatron Electroweak Working Group, CDF, DELPHI, SLD Electroweak and Heavy Flavour Groups, ALEPH, LEP Electroweak Working Group, SLD, OPAL, D0, L3 and L.E.W. Group collaborations, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].

  10. [10]

    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].

  12. [12]

    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    M. Gouzevitch, A. Oliveira, J. Rojo, R. Rosenfeld, G.P. Salam and V. Sanz, Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP 07 (2013) 148 [arXiv:1303.6636] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    CMS collaboration, Identification techniques for highly boosted W bosons that decay into hadrons, JHEP 12 (2014) 017 [arXiv:1410.4227] [INSPIRE].

  19. [19]

    ATLAS collaboration, Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 154 [arXiv:1510.05821] [INSPIRE].

  20. [20]

    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].

  21. [21]

    CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].

  22. [22]

    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].

  23. [23]

    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].

  24. [24]

    ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].

  25. [25]

    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].

  26. [26]

    CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].

  27. [27]

    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].

  28. [28]

    W.-Y. Keung and G. Senjanović, Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].

  30. [30]

    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].

  31. [31]

    CMS collaboration, Search for massive WH resonances decaying into the \( \ell \nu \mathrm{b}\overline{\mathrm{b}} \) final state at \( \sqrt{s}=8 \) TeV, arXiv:1601.06431 [INSPIRE].

  32. [32]

    CMS collaboration, Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2016) 145 [arXiv:1506.01443] [INSPIRE].

  33. [33]

    CMS collaboration, Search for Narrow High-Mass Resonances in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV Decaying to a Z and a Higgs Boson, Phys. Lett. B 748 (2015) 255 [arXiv:1502.04994] [INSPIRE].

  34. [34]

    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to \( b\overline{b} \) and τ + τ in proton-proton collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-15-008 (2015).

  35. [35]

    J. Hisano, N. Nagata and Y. Omura, Interpretations of the ATLAS Diboson Resonances, Phys. Rev. D 92 (2015) 055001 [arXiv:1506.03931] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    K. Cheung, W.-Y. Keung, P.-Y. Tseng and T.-C. Yuan, Interpretations of the ATLAS Diboson Anomaly, Phys. Lett. B 751 (2015) 188 [arXiv:1506.06064] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    B.A. Dobrescu and Z. Liu, W’ Boson near 2 TeV: Predictions for Run 2 of the LHC, Phys. Rev. Lett. 115 (2015) 211802 [arXiv:1506.06736] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    Y. Gao, T. Ghosh, K. Sinha and J.-H. Yu, SU(2) × SU(2) × U(1) interpretations of the diboson and Wh excesses, Phys. Rev. D 92 (2015) 055030 [arXiv:1506.07511] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and J. Tattersall, Symmetry Restored in Dibosons at the LHC?, JHEP 10 (2015) 182 [arXiv:1507.00013] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    T. Abe, R. Nagai, S. Okawa and M. Tanabashi, Unitarity sum rules, three-site moose model and the ATLAS 2 TeV diboson anomalies, Phys. Rev. D 92 (2015) 055016 [arXiv:1507.01185] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    P. Coloma, B.A. Dobrescu and J. Lopez-Pavon, Right-handed neutrinos and the 2 TeV Wboson, Phys. Rev. D 92 (2015) 115023 [arXiv:1508.04129] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    Q.-H. Cao, B. Yan and D.-M. Zhang, Simple non-Abelian extensions of the standard model gauge group and the diboson excesses at the LHC, Phys. Rev. D 92 (2015) 095025 [arXiv:1507.00268] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    K. Das, T. Li, S. Nandi and S.K. Rai, Diboson excesses in an anomaly free leptophobic left-right model, Phys. Rev. D 93 (2016) 016006 [arXiv:1512.00190] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    J.A. Aguilar-Saavedra, Triboson interpretations of the ATLAS diboson excess, JHEP 10 (2015) 099 [arXiv:1506.06739] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    G. Cacciapaglia and M.T. Frandsen, Unitarity implications of a diboson resonance in the TeV region for Higgs physics, Phys. Rev. D 92 (2015) 055035 [arXiv:1507.00900] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    B.C. Allanach, B. Gripaios and D. Sutherland, Anatomy of the ATLAS diboson anomaly, Phys. Rev. D 92 (2015) 055003 [arXiv:1507.01638] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    T. Abe, T. Kitahara and M.M. Nojiri, Prospects for Spin-1 Resonance Search at 13 TeV LHC and the ATLAS Diboson Excess, JHEP 02 (2016) 084 [arXiv:1507.01681] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    H.S. Fukano, S. Matsuzaki and K. Yamawaki, Conformal Barrier for New Vector Bosons Decay to the Higgs, Mod. Phys. Lett. A 31 (2016) 1630009 [arXiv:1507.03428] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    S.P. Liew and S. Shirai, Testing ATLAS Diboson Excess with Dark Matter Searches at LHC, JHEP 11 (2015) 191 [arXiv:1507.08273] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    J.H. Collins and W.H. Ng, A 2 TeV W R , supersymmetry and the Higgs mass, JHEP 01 (2016) 159 [arXiv:1510.08083] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    D. Aristizabal Sierra, J. Herrero-Garcia, D. Restrepo and A. Vicente, Diboson anomaly: Heavy Higgs resonance and QCD vectorlike exotics, Phys. Rev. D 93 (2016) 015012 [arXiv:1510.03437] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    H.S. Fukano, M. Kurachi, S. Matsuzaki, K. Terashi and K. Yamawaki, 2 TeV Walking Technirho at LHC?, Phys. Lett. B 750 (2015) 259 [arXiv:1506.03751] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    D.B. Franzosi, M.T. Frandsen and F. Sannino, Diboson Signals via Fermi Scale Spin-One States, Phys. Rev. D 92 (2015) 115005 [arXiv:1506.04392] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    A. Thamm, R. Torre and A. Wulzer, Composite Heavy Vector Triplet in the ATLAS Diboson Excess, Phys. Rev. Lett. 115 (2015) 221802 [arXiv:1506.08688] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    C.-W. Chiang, H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Diboson Resonance as a Portal to Hidden Strong Dynamics, JHEP 11 (2015) 015 [arXiv:1507.02483] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    M. Low, A. Tesi and L.-T. Wang, Composite spin-1 resonances at the LHC, Phys. Rev. D 92 (2015) 085019 [arXiv:1507.07557] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    H.S. Fukano, S. Matsuzaki, K. Terashi and K. Yamawaki, Conformal Barrier and Hidden Local Symmetry Constraints: Walking Technirhos in LHC Diboson Channels, Nucl. Phys. B 904 (2016) 400 [arXiv:1510.08184] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    A. Carmona, A. Delgado, M. Quirós and J. Santiago, Diboson resonant production in non-custodial composite Higgs models, JHEP 09 (2015) 186 [arXiv:1507.01914] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    B.A. Dobrescu and Z. Liu, Heavy Higgs bosons and the 2 TeV Wboson, JHEP 10 (2015) 118 [arXiv:1507.01923] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    V. Sanz, On the Compatibility of the Diboson Excess with a gg-Initiated Composite Sector, Adv. High Energy Phys. 2016 (2016) 3279568 [arXiv:1507.03553] [INSPIRE].

  62. [62]

    C.-H. Chen and T. Nomura, 2 TeV Higgs boson and diboson excess at the LHC, Phys. Lett. B 749 (2015) 464 [arXiv:1507.04431] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    Y. Omura, K. Tobe and K. Tsumura, Survey of Higgs interpretations of the diboson excesses, Phys. Rev. D 92 (2015) 055015 [arXiv:1507.05028] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    C.-H. Chen and T. Nomura, Diboson excess in the Higgs singlet and vectorlike quark models, Phys. Rev. D 92 (2015) 115021 [arXiv:1509.02039] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    H.M. Lee, D. Kim, K. Kong and S.C. Park, Diboson Excesses Demystified in Effective Field Theory Approach, JHEP 11 (2015) 150 [arXiv:1507.06312] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    F.F. Deppisch et al., Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model, Phys. Rev. D 93 (2016) 013011 [arXiv:1508.05940] [INSPIRE].

    ADS  Google Scholar 

  67. [67]

    A. Alves, D.A. Camargo and A.G. Dias, Heavy Higgs Coupled to Vector-Like Quarks: Strong CP Problem, Diboson Excess and Search Prospects at the 14 TeV LHC, arXiv:1511.04449 [INSPIRE].

  68. [68]

    J. Brehmer et al., The Diboson Excess: Experimental Situation and Classification of Explanations; A Les Houches Pre-Proceeding, arXiv:1512.04357 [INSPIRE].

  69. [69]

    HEPDATA database, http://hepdata.cedar.ac.uk/.

  70. [70]

    T. Müller, J. Ott and J. Wagner-Kuhr, The theta framework for template-based statistical modeling and inference, http://www.theta-framework.org/.

  71. [71]

    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  72. [72]

    Presentation of search results: the CL s technique, J. Phys. G 28 (2002) 2693.

  73. [73]

    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  76. [76]

    A. Oliveira, Gravity particles from Warped Extra Dimensions, a review. Part I — KK Graviton, arXiv:1404.0102 [INSPIRE].

  77. [77]

    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy Vector Triplets: Bridging Theory and Data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. [78]

    ATLAS collaboration, Combination of searches for WW, WZ and ZZ resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 755 (2016) 285 [arXiv:1512.05099] [INSPIRE].

  79. [79]

    ATLAS collaboration, Search for production of WW/W Z resonances decaying to a lepton, neutrino and jets in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 209 [Erratum ibid. C 75 (2015) 370] [arXiv:1503.04677] [INSPIRE].

  80. [80]

    ATLAS collaboration, Search for resonant diboson production in the ℓℓq q final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 69 [arXiv:1409.6190] [INSPIRE].

  81. [81]

    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Proceedings of Monte Carlo generators for HERA physics Workshop, Hamburg Germany (1998) [hep-ph/9907280] [INSPIRE].

  83. [83]

    ATLAS collaboration, Search for WW/WZ resonance production in the ℓνqq final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2015-075 (2015).

  84. [84]

    ATLAS collaboration, Search for diboson resonances in the llqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-071 (2015).

  85. [85]

    ATLAS collaboration, Search for resonances with boson-tagged jets in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV collected with the ATLAS detector, ATLAS-CONF-2015-073 (2015).

  86. [86]

    ATLAS collaboration, Search for diboson resonances in the ννqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-068 (2015).

  87. [87]

    CMS collaboration, Search for massive resonances decaying into pairs of boosted W and Z bosons at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-002 (2015).

  88. [88]

    W.J. Stirling, private communication, http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html.

  89. [89]

    R.M. Harris and K. Kousouris, Searches for Dijet Resonances at Hadron Colliders, Int. J. Mod. Phys. A 26 (2011) 5005 [arXiv:1110.5302] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Leonidopoulos.

Additional information

ArXiv ePrint: 1512.03371

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dias, F., Gadatsch, S., Gouzevich, M. et al. Combination of Run-1 exotic searches in diboson final states at the LHC. J. High Energ. Phys. 2016, 155 (2016). https://doi.org/10.1007/JHEP04(2016)155

Download citation

Keywords

  • Phenomenology of Field Theories in Higher Dimensions