Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The case for 100 GeV bino dark matter: a dedicated LHC tri-lepton search

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 April 2016
  • Volume 2016, article number 154, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The case for 100 GeV bino dark matter: a dedicated LHC tri-lepton search
Download PDF
  • Melissa van Beekveld1,
  • Wim Beenakker1,3,
  • Sascha Caron1,2 &
  • …
  • Roberto Ruiz de Austri4 
  • 428 Accesses

  • 17 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Global fit studies performed in the pMSSM and the photon excess signal originating from the Galactic Center seem to suggest compressed electroweak supersymmetric spectra with a ∼100 GeV bino-like dark matter particle. We find that these scenarios are not probed by traditional electroweak supersymmetry searches at the LHC. We propose to extend the ATLAS and CMS electroweak supersymmetry searches with an improved strategy for bino-like dark matter, focusing on chargino plus next-to-lightest neutralino production, with a subsequent decay into a tri-lepton final state. We explore the sensitivity for pMSSM scenarios with Δm = m NLSP − m LSP ∼ (5 − 50) GeV in the \( \sqrt{s} = 14 \) TeV run of the LHC. Counterintuitively, we find that the requirement of low missing transverse energy increases the sensitivity compared to the current ATLAS and CMS searches. With 300 fb−1 of data we expect the LHC experiments to be able to discover these supersymmetric spectra with mass gaps down to Δm ∼ 9 GeV for DM masses between 40 and 140 GeV. We stress the importance of a dedicated search strategy that targets precisely these favored pMSSM spectra.

Article PDF

Download to read the full article text

Similar content being viewed by others

Testing the light dark matter scenario of the MSSM at the LHC

Article Open access 31 March 2016

Lighting up the LHC with Dark Matter

Article Open access 08 November 2023

Probing U(1) extensions of the MSSM at the LHC Run I and in dark matter searches

Article Open access 22 September 2015

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.
  • Experimental Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  2. T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G 43 (2016) 013001 [arXiv:1509.08767] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. Bertone and J. Silk, Particle dark matter, Cambridge University Press, Cambridge U.K. (2010), pg. 3 [INSPIRE].

  4. L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner milky way from the Fermi gamma ray space telescope, arXiv:0910.2998 [INSPIRE].

  5. Fermi-LAT collaboration, V. Vitale and A. Morselli, Indirect search for dark matter from the center of the milky way with the Fermi-Large Area Telescope, arXiv:0912.3828 [INSPIRE].

  6. D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].

    ADS  Google Scholar 

  8. K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].

  9. C. Gordon and O. Macias, Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations, Phys. Rev. D 88 (2013) 083521 [Erratum ibid. D 89 (2014) 049901] [arXiv:1306.5725] [INSPIRE].

  10. D. Hooper and T.R. Slatyer, Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589] [INSPIRE].

    Article  Google Scholar 

  11. K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and dark matter interpretations of extended gamma-ray emission from the galactic center, Phys. Rev. D 90 (2014) 023526 [arXiv:1402.4090] [INSPIRE].

    ADS  Google Scholar 

  12. T. Daylan et al., The characterization of the gamma-ray signal from the central milky way: a case for annihilating dark matter, Phys. Dark Univ. 12 (2016) 1 [arXiv:1402.6703] [INSPIRE].

    Article  Google Scholar 

  13. F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, JCAP 03 (2015) 038 [arXiv:1409.0042] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Fermi-LAT collaboration, M. Ajello et al., Fermi-LAT observations of high-energy γ-ray emission toward the galactic center, Astrophys. J. 819 (2016) 44 [arXiv:1511.02938] [INSPIRE].

  15. A. Achterberg, S. Amoroso, S. Caron, L. Hendriks, R. Ruiz de Austri and C. Weniger, A description of the galactic center excess in the minimal supersymmetric standard model, JCAP 08 (2015) 006 [arXiv:1502.05703] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Bertone et al., Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC run-II and astroparticle experiments, JCAP 04 (2016) 037 [arXiv:1507.07008] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Geringer-Sameth et al., Indication of gamma-ray emission from the newly discovered dwarf galaxy reticulum II, Phys. Rev. Lett. 115 (2015) 081101 [arXiv:1503.02320] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Achterberg, M. van Beekveld, W. Beenakker, S. Caron and L. Hendriks, Comparing galactic center MSSM dark matter solutions to the reticulum II gamma-ray data, JCAP 12 (2015) 013 [arXiv:1507.04644] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Li et al., Search for gamma-ray emission from eight dwarf spheroidal galaxy candidates discovered in year two of dark energy survey with Fermi-LAT data, Phys. Rev. D 93 (2016) 043518 [arXiv:1511.09252] [INSPIRE].

    ADS  Google Scholar 

  20. C. Strege et al., Profile likelihood maps of a 15-dimensional MSSM, JHEP 09 (2014) 081 [arXiv:1405.0622] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K.J. de Vries et al., The pMSSM10 after LHC Run 1, Eur. Phys. J. C 75 (2015) 422 [arXiv:1504.03260] [INSPIRE].

    Article  ADS  Google Scholar 

  22. E.A. Bagnaschi et al., Supersymmetric dark matter after LHC Run 1, Eur. Phys. J. C 75 (2015) 500 [arXiv:1508.01173] [INSPIRE].

    Article  ADS  Google Scholar 

  23. ATLAS collaboration, Summary plot from the ATLAS supersymmetry physics group, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/ATLASSUSY EWSummary/ATLAS SUSY EWSummary.png.

  24. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,ATLAS-CONF-2012-154,CERN,GenevaSwitzerland (2012).

  25. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].

  26. ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV,Phys. Lett. B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].

  27. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,ATLAS-CONF-2013-035,CERN,GenevaSwitzerland (2013).

  28. CMS collaboration, Searches for electroweak neutralino and chargino production in channels with Higgs, Z and W bosons in pp collisions at 8 TeV, Phys. Rev. D 90 (2014) 092007 [arXiv:1409.3168] [INSPIRE].

  29. ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,JHEP 05(2014) 071 [arXiv:1403.5294] [INSPIRE].

  30. CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W , Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

  31. ATLAS collaboration, Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2014) 096 [arXiv:1407.0350] [INSPIRE].

  32. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].

  33. ATLAS collaboration, Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 208 [arXiv:1501.07110] [INSPIRE].

  34. ATLAS collaboration, Search for the electroweak production of supersymmetric particles in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 [arXiv:1509.07152] [INSPIRE].

  35. CMS collaboration, Search for supersymmetry with photons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 92 (2015) 072006 [arXiv:1507.02898] [INSPIRE].

  36. H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Berggren et al., Tackling light higgsinos at the ILC, Eur. Phys. J. C 73 (2013) 2660 [arXiv:1307.3566] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].

    Article  ADS  Google Scholar 

  39. OPAL collaboration, G. Abbiendi et al., Search for nearly mass degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [INSPIRE].

  40. ALEPH collaboration, A. Heister et al., Search for charginos nearly mass degenerate with the lightest neutralino in e + e − collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 533 (2002) 223 [hep-ex/0203020] [INSPIRE].

  41. DELPHI collaboration, P. Abreu et al., Update of the search for charginos nearly mass-degenerate with the lightest neutralino, Phys. Lett. B 485 (2000) 95 [hep-ex/0103035] [INSPIRE].

  42. P. Zarzhitsky, R. Kehoe and R. Stroynowski, Search for supersymmetry in a three lepton plus jets signature, Ph.D. thesis, Southern Methodist U., Dallas U.S.A. December 2008 [INSPIRE].

  43. S. Gori, S. Jung and L.-T. Wang, Cornering electroweakinos at the LHC, JHEP 10 (2013) 191 [arXiv:1307.5952] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Cao, Y. He, L. Shang, W. Su and Y. Zhang, Testing the light dark matter scenario of the MSSM at the LHC, JHEP 03 (2016) 207 [arXiv:1511.05386] [INSPIRE].

    Article  ADS  Google Scholar 

  46. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].

  47. CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W , Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

  48. J. Alwall, P. Schuster and N. Toro, Simplified models for a first characterization of new physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].

    ADS  Google Scholar 

  49. G. Benelli, Search for stable and long lived heavy charged particles in electron positron collisions at center of mass energies from 130 GeV to 209 GeV with the OPAL detector at LEP, Ph.D. thesis, Bologna Univ., Bologna Italy (1998) [INSPIRE].

  50. M. Carena, A. de Gouvêa, A. Freitas and M. Schmitt, Invisible Z boson decays at e + e − colliders, Phys. Rev. D 68 (2003) 113007 [hep-ph/0308053] [INSPIRE].

  51. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  53. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  55. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  56. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  57. J.T. Linnemann, Measures of significance in HEP and astrophysics, in Statistical problems in particle physics, astrophysics, and cosmology, L. Lyons, R. Mount and R. Reitmeyer eds., (2003), pg. 35 [eConf C 030908 (2003) MOBT001] [physics/0312059] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands

    Melissa van Beekveld, Wim Beenakker & Sascha Caron

  2. Nikhef, Science Park 105, Amsterdam, The Netherlands

    Sascha Caron

  3. Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands

    Wim Beenakker

  4. Instituto de Fisica Corpuscular, IFIC-UV/CSIC, Calle Catedrático José Beltran 2, Valencia, Spain

    Roberto Ruiz de Austri

Authors
  1. Melissa van Beekveld
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Wim Beenakker
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sascha Caron
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Roberto Ruiz de Austri
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Melissa van Beekveld.

Additional information

ArXiv ePrint: 1602.00590

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Beekveld, M., Beenakker, W., Caron, S. et al. The case for 100 GeV bino dark matter: a dedicated LHC tri-lepton search. J. High Energ. Phys. 2016, 154 (2016). https://doi.org/10.1007/JHEP04(2016)154

Download citation

  • Received: 24 February 2016

  • Accepted: 20 April 2016

  • Published: 26 April 2016

  • DOI: https://doi.org/10.1007/JHEP04(2016)154

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature