Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Effective holographic theories of momentum relaxation and violation of conductivity bound

  • Open Access
  • Published: 19 April 2016
  • volume 2016, Article number: 122 (2016)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Effective holographic theories of momentum relaxation and violation of conductivity bound
Download PDF
  • Blaise Goutéraux1,2,
  • Elias Kiritsis2,3 &
  • Wei-Jia Li3 
  • 317 Accesses

  • 52 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We generalize current holographic models with homogeneous breaking of translation symmetry by incorporating higher derivative couplings, in the spirit of effective field theories. Focusing on charge transport, we specialize to two simple couplings between the charge and translation symmetry breaking sectors. We obtain analytical charged black brane solutions and compute their DC conductivity in terms of horizon data. We constrain the allowed values of the couplings and note that the DC conductivity can vanish at zero temperature for strong translation symmetry breaking, thus showing that in general there is no lower bound on the conductivity.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP 10 (2015) 112 [arXiv:1507.07137] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. S.A. Hartnoll and J.E. Santos, Disordered horizons: holography of randomly disordered fixed points, Phys. Rev. Lett. 112 (2014) 231601 [arXiv:1402.0872] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035 [arXiv:1409.6875] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Emergent scale invariance of disordered horizons, JHEP 09 (2015) 160 [arXiv:1504.03324] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Rangamani, M. Rozali and D. Smyth, Spatial modulation and conductivities in effective holographic theories, JHEP 07 (2015) 024 [arXiv:1505.05171] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. B.W. Langley, G. Vanacore and P.W. Phillips, Absence of power-law mid-infrared conductivity in gravitational crystals, JHEP 10 (2015) 163 [arXiv:1506.06769] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Thermal conductivity at a disordered quantum critical point, arXiv:1508.04435 [INSPIRE].

  11. D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

  12. R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].

    ADS  Google Scholar 

  13. M. Blake and D. Tong, Universal resistivity from holographic massive gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].

    ADS  Google Scholar 

  14. R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].

    Article  ADS  Google Scholar 

  18. B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160 [arXiv:1406.4134] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 09 (2015) 090 [arXiv:1505.05092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Andrade, S.A. Gentle and B. Withers, Drude in D major, arXiv:1512.06263 [INSPIRE].

  25. A. Donos and J.P. Gauntlett, Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity, Phys. Rev. D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. E. Banks, A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows on black hole horizons, JHEP 10 (2015) 103 [arXiv:1507.00234] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC conductivity of magnetised holographic matter, JHEP 01 (2016) 113 [arXiv:1511.00713] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].

    Article  ADS  Google Scholar 

  29. R. Mahajan, M. Barkeshli and S.A. Hartnoll, Non-Fermi liquids and the Wiedemann-Franz law, Phys. Rev. B 88 (2013) 125107 [arXiv:1304.4249] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B 91 (2015) 195122 [arXiv:1502.04704] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Lucas, Conductivity of a strange metal: from holography to memory functions, JHEP 03 (2015) 071 [arXiv:1501.05656] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Blake, Momentum relaxation from the fluid/gravity correspondence, JHEP 09 (2015) 010 [arXiv:1505.06992] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  33. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys. 17 (2015) 113007 [arXiv:1506.02662] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54 [arXiv:1405.3651] [INSPIRE].

    Article  ADS  Google Scholar 

  36. K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP 12 (2014) 170 [arXiv:1409.8346] [INSPIRE].

    Article  ADS  Google Scholar 

  37. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].

    ADS  Google Scholar 

  39. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Cremonini, The shear viscosity to entropy ratio: a status report, Mod. Phys. Lett. B 25 (2011) 1867 [arXiv:1108.0677] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. S. Jain, N. Kundu, K. Sen, A. Sinha and S.P. Trivedi, A strongly coupled anisotropic fluid from dilaton driven holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Jain, R. Samanta and S.P. Trivedi, The shear viscosity in anisotropic phases, JHEP 10 (2015) 028 [arXiv:1506.01899] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Entropy production, viscosity bounds and bumpy black holes, JHEP 03 (2016) 170 [arXiv:1601.02757] [INSPIRE].

    Article  ADS  Google Scholar 

  44. L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, arXiv:1601.03384 [INSPIRE].

  45. A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Donos, B. Goutéraux and E. Kiritsis, Holographic metals and insulators with helical symmetry, JHEP 09 (2014) 038 [arXiv:1406.6351] [INSPIRE].

    Article  ADS  Google Scholar 

  47. E. Kiritsis and J. Ren, On holographic insulators and supersolids, JHEP 09 (2015) 168 [arXiv:1503.03481] [INSPIRE].

    Article  ADS  Google Scholar 

  48. Y. Ling, P. Liu, C. Niu and J.-P. Wu, Building a doped Mott system by holography, Phys. Rev. D 92 (2015) 086003 [arXiv:1507.02514] [INSPIRE].

    ADS  Google Scholar 

  49. Y. Ling, P. Liu and J.-P. Wu, A novel insulator by holographic Q-lattices, JHEP 02 (2016) 075 [arXiv:1510.05456] [INSPIRE].

    Article  ADS  Google Scholar 

  50. Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett. 113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett. 115 (2015) 221601 [arXiv:1507.00003] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid holography and massive gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Baggioli and O. Pujolàs, On holographic disorder-driven metal-insulator transitions, arXiv:1601.07897 [INSPIRE].

  56. Y. Bardoux, M.M. Caldarelli and C. Charmousis, Shaping black holes with free fields, JHEP 05 (2012) 054 [arXiv:1202.4458] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. E. Kiritsis, String theory in a nutshell, Princeton University Press, Princeton U.S.A. (2007).

    MATH  Google Scholar 

  60. S. Grozdanov, A. Lucas and K. Schalm, Incoherent thermal transport from dirty black holes, Phys. Rev. D 93 (2016) 061901 [arXiv:1511.05970] [INSPIRE].

    ADS  Google Scholar 

  61. C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. R.C. Myers, S. Sachdev and A. Singh, Holographic Quantum Critical Transport without Self-Duality, Phys. Rev. D 83 (2011) 066017 [arXiv:1010.0443] [INSPIRE].

    ADS  Google Scholar 

  63. W. Witczak-Krempa and S. Sachdev, The quasi-normal modes of quantum criticality, Phys. Rev. B 86 (2012) 235115 [arXiv:1210.4166] [INSPIRE].

    Article  ADS  Google Scholar 

  64. W. Witczak-Krempa and S. Sachdev, Dispersing quasinormal modes in 2 + 1 dimensional conformal field theories, Phys. Rev. B 87 (2013) 155149 [arXiv:1302.0847] [INSPIRE].

    Article  ADS  Google Scholar 

  65. W. Witczak-Krempa, E. Sorensen and S. Sachdev, The dynamics of quantum criticality via quantum Monte Carlo and holography, Nature Phys. 10 (2014) 361 [arXiv:1309.2941] [INSPIRE].

    Article  ADS  Google Scholar 

  66. W. Witczak-Krempa, Quantum critical charge response from higher derivatives in holography, Phys. Rev. B 89 (2014) 161114 [arXiv:1312.3334] [INSPIRE].

    Article  ADS  Google Scholar 

  67. R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. J. Bhattacharya, S. Cremonini and B. Goutéraux, Intermediate scalings in holographic RG flows and conductivities, JHEP 02 (2015) 035 [arXiv:1409.4797] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA, 94305-4060, U.S.A.

    Blaise Goutéraux

  2. APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité, Bâtiment Condorcet, F-75205, Paris Cedex 13, France (UMR du CNRS 7164)

    Blaise Goutéraux & Elias Kiritsis

  3. Crete Center for Theoretical Physics and I.P.P., Department of Physics, University of Crete, 71003, Heraklion, Greece

    Elias Kiritsis & Wei-Jia Li

Authors
  1. Blaise Goutéraux
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Elias Kiritsis
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Wei-Jia Li
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Blaise Goutéraux.

Additional information

ArXiv ePrint: 1602.01067

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goutéraux, B., Kiritsis, E. & Li, WJ. Effective holographic theories of momentum relaxation and violation of conductivity bound. J. High Energ. Phys. 2016, 122 (2016). https://doi.org/10.1007/JHEP04(2016)122

Download citation

  • Received: 12 February 2016

  • Accepted: 31 March 2016

  • Published: 19 April 2016

  • DOI: https://doi.org/10.1007/JHEP04(2016)122

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Holography and condensed matter physics (AdS/CMT)
  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature