Advertisement

Fermion-scalar conformal blocks

  • Luca Iliesiu
  • Filip Kos
  • David PolandEmail author
  • Silviu S. Pufu
  • David Simmons-Duffin
  • Ran Yacoby
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

Keywords

Conformal and W Symmetry Nonperturbative Effects 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    G. Mack, Duality in quantum field theory, Nucl. Phys. B 118 (1977) 445 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].ADSzbMATHGoogle Scholar
  9. [9]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Rychkov, Conformal bootstrap in three dimensions?, arXiv:1111.2115 [INSPIRE].
  13. [13]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSzbMATHGoogle Scholar
  14. [14]
    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Beem, L. Rastelli and B.C. van Rees, The N = 4 superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP 09 (2014) 144 [arXiv:1310.3757] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Bashkirov, Bootstrapping the N = 1 SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].
  21. [21]
    M. Berkooz, R. Yacoby and A. Zait, Bounds on N = 1 superconformal theories with global symmetries, JHEP 08 (2014) 008 [Erratum ibid. 01 (2015) 132] [arXiv:1402.6068] [INSPIRE].
  22. [22]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(N) × O(M) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev. D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Y. Nakayama and T. Ohtsuki, Five dimensional O(N)-symmetric CFTs from conformal bootstrap, Phys. Lett. B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.F. Alday and A. Bissi, Generalized bootstrap equations for N = 4 SCFT, JHEP 02 (2015) 101 [arXiv:1404.5864] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The N = 8 superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Caracciolo, A.C. Echeverri, B. von Harling and M. Serone, Bounds on OPE coefficients in 4D conformal field theories, JHEP 10 (2014) 020 [arXiv:1406.7845] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Y. Nakayama and T. Ohtsuki, Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev. D 91 (2015) 021901 [arXiv:1407.6195] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Golden and M.F. Paulos, No unitary bootstrap for the fractal Ising model, JHEP 03 (2015) 167 [arXiv:1411.7932] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact correlators of BPS operators from the 3d superconformal bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  32. [32]
    M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
  33. [33]
    C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The N = 2 superconformal bootstrap, arXiv:1412.7541 [INSPIRE].
  34. [34]
    D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional supersymmetric Ising model, Phys. Rev. Lett. 115 (2015) 051601 [arXiv:1502.04124] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].MathSciNetGoogle Scholar
  37. [37]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental symmetries and the conformal bootstrap, JHEP 01 (2016) 110 [arXiv:1507.04424] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].ADSGoogle Scholar
  40. [40]
    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Poland and A. Stergiou, Exploring the minimal 4D N = 1 SCFT, JHEP 12 (2015) 121 [arXiv:1509.06368] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Lemos and P. Liendo, Bootstrapping N = 2 chiral correlators, JHEP 01 (2016) 025 [arXiv:1510.03866] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  46. [46]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    A.C. Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing conformal blocks in 4D CFT, JHEP 08 (2015) 101 [arXiv:1505.03750] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP 02 (2015) 151 [arXiv:1411.7351] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    F. Rejon-Barrera and D. Robbins, Scalar-vector bootstrap, JHEP 01 (2016) 139 [arXiv:1508.02676] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Penedones, E. Trevisani and M. Yamazaki, Recursion relations for conformal blocks, arXiv:1509.00428 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Luca Iliesiu
    • 1
  • Filip Kos
    • 2
  • David Poland
    • 2
    • 3
    Email author
  • Silviu S. Pufu
    • 1
  • David Simmons-Duffin
    • 3
  • Ran Yacoby
    • 1
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.
  2. 2.Department of PhysicsYale UniversityNew HavenU.S.A.
  3. 3.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations