ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.
B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.
B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett.
B 155 (1985) 36 [INSPIRE].
ADS
Article
Google Scholar
M.E. Shaposhnikov, Possible appearance of the baryon asymmetry of the universe in an electroweak theory, JETP Lett.
44 (1986) 465 [Pisma Zh. Eksp. Teor. Fiz.
44 (1986) 364] [INSPIRE].
M.E. Shaposhnikov, Baryon asymmetry of the universe in standard electroweak theory, Nucl. Phys.
B 287 (1987) 757 [INSPIRE].
ADS
Article
Google Scholar
A.G. Cohen, D.B. Kaplan and A.E. Nelson, Spontaneous baryogenesis at the weak phase transition, Phys. Lett.
B 263 (1991) 86 [INSPIRE].
ADS
Article
Google Scholar
A.E. Nelson, D.B. Kaplan and A.G. Cohen, Why there is something rather than nothing: matter from weak interactions, Nucl. Phys.
B 373 (1992) 453 [INSPIRE].
ADS
Article
Google Scholar
K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m
H
larger or equal to m
W
?, Phys. Rev. Lett.
77 (1996) 2887 [hep-ph/9605288] [INSPIRE].
ADS
Article
Google Scholar
K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A nonperturbative analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys.
B 493 (1997) 413 [hep-lat/9612006] [INSPIRE].
ADS
Article
Google Scholar
M.B. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: finite temperature, Nucl. Phys.
B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].
ADS
Article
Google Scholar
P. Huet and E. Sather, Electroweak baryogenesis and standard model CP-violation, Phys. Rev.
D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].
ADS
Google Scholar
R. Cooke, M. Pettini, R.A. Jorgenson, M.T. Murphy and C.C. Steidel, Precision measures of the primordial abundance of deuterium, Astrophys. J.
781 (2014) 31 [arXiv:1308.3240] [INSPIRE].
ADS
Article
Google Scholar
Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci.
43 (1993) 27 [hep-ph/9302210] [INSPIRE].
ADS
Article
Google Scholar
M. Trodden, Electroweak baryogenesis, Rev. Mod. Phys.
71 (1999) 1463 [hep-ph/9803479] [INSPIRE].
ADS
Article
Google Scholar
D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys.
14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
ADS
Article
Google Scholar
X. Zhang and B.L. Young, Effective Lagrangian approach to electroweak baryogenesis: Higgs mass limit and electric dipole moments of fermion, Phys. Rev.
D 49 (1994) 563 [hep-ph/9309269] [INSPIRE].
ADS
Google Scholar
C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev.
D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
ADS
Google Scholar
D. Bödeker, L. Fromme, S.J. Huber and M. Seniuch, The baryon asymmetry in the standard model with a low cut-off, JHEP
02 (2005) 026 [hep-ph/0412366] [INSPIRE].
MathSciNet
Article
Google Scholar
C. Delaunay, C. Grojean and J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking, JHEP
04 (2008) 029 [arXiv:0711.2511] [INSPIRE].
ADS
Article
Google Scholar
B. Grinstein and M. Trott, Electroweak baryogenesis with a pseudo-Goldstone Higgs, Phys. Rev.
D 78 (2008) 075022 [arXiv:0806.1971] [INSPIRE].
ADS
Google Scholar
F.P. Huang and C.S. Li, Electroweak baryogenesis in the framework of the effective field theory, Phys. Rev.
D 92 (2015) 075014 [arXiv:1507.08168] [INSPIRE].
ADS
Google Scholar
J. Ellis, V. Sanz and T. You, The effective standard model after LHC Run I, JHEP
03 (2015) 157 [arXiv:1410.7703] [INSPIRE].
Article
Google Scholar
D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev.
D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].
ADS
Google Scholar
J. Shu and Y. Zhang, Impact of a CP-violating Higgs sector: from LHC to baryogenesis, Phys. Rev. Lett.
111 (2013) 091801 [arXiv:1304.0773] [INSPIRE].
ADS
Article
Google Scholar
A. Katz and M. Perelstein, Higgs couplings and electroweak phase transition, JHEP
07 (2014) 108 [arXiv:1401.1827] [INSPIRE].
ADS
Article
Google Scholar
D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP
11 (2014) 127 [arXiv:1409.0005] [INSPIRE].
ADS
Article
Google Scholar
W. Chao and M.J. Ramsey-Musolf, Electroweak baryogenesis, electric dipole moments and Higgs diphoton decays, JHEP
10 (2014) 180 [arXiv:1406.0517] [INSPIRE].
ADS
Article
Google Scholar
N. Blinov, J. Kozaczuk, D.E. Morrissey and C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking, Phys. Rev.
D 92 (2015) 035012 [arXiv:1504.05195] [INSPIRE].
ADS
Google Scholar
F.P. Huang, P.-H. Gu, P.-F. Yin, Z.-H. Yu and X. Zhang, Testing the electroweak phase transition and electroweak baryogenesis at LHC and CEPC, arXiv:1511.03969 [INSPIRE].
P. Huang, A. Joglekar, B. Li and C.E.M. Wagner, Probing the electroweak phase transition at the LHC, Phys. Rev.
D 93 (2016) 055049 [arXiv:1512.00068] [INSPIRE].
Google Scholar
P.H. Damgaard, A. Haarr, D. O’Connell and A. Tranberg, Effective field theory and electroweak baryogenesis in the singlet-extended standard model, JHEP
02 (2016) 107 [arXiv:1512.01963] [INSPIRE].
ADS
Article
Google Scholar
A. Kobakhidze, Standard model with a distorted Higgs sector and the enhanced Higgs diphoton decay rate, arXiv:1208.5180 [INSPIRE].
S. Ferrara, A. Masiero and M. Porrati, Nonlinear realizations of SU(2) × U(1) in the MSSM: model independent analysis and g − 2 of W bosons, Phys. Lett.
B 301 (1993) 358 [hep-ph/9212211] [INSPIRE].
ADS
Article
Google Scholar
A. Kobakhidze and M. Talia, The effective MSSM, Phys. Lett.
B 751 (2015) 251 [arXiv:1508.04068] [INSPIRE].
ADS
Article
Google Scholar
T. Appelquist and M.S. Chanowitz, Unitarity bound on the scale of fermion mass generation, Phys. Rev. Lett.
59 (1987) 2405 [Erratum ibid.
60 (1988) 1589] [INSPIRE].
D. Binosi and A. Quadri, Scalar resonances in the non-linearly realized electroweak theory, JHEP
02 (2013) 020 [arXiv:1210.2637] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Kobakhidze, L. Wu and J. Yue, Anomalous top-Higgs couplings and top polarisation in single top and Higgs associated production at the LHC, JHEP
10 (2014) 100 [arXiv:1406.1961] [INSPIRE].
ADS
Article
Google Scholar
S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett.
65 (1990) 21 [Erratum ibid.
65 (1990) 2920] [INSPIRE].
J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt and E.A. Hinds, Improved measurement of the shape of the electron, Nature
473 (2011) 493 [INSPIRE].
ADS
Article
Google Scholar
ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science
343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP
02 (2016) 011 [arXiv:1510.00725] [INSPIRE].
ADS
Article
Google Scholar
N.S. Manton, Topology in the Weinberg-Salam theory, Phys. Rev.
D 28 (1983) 2019 [INSPIRE].
ADS
MathSciNet
Google Scholar
F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev.
D 30 (1984) 2212 [INSPIRE].
ADS
Google Scholar
P. Huet and A.E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev.
D 53 (1996) 4578 [hep-ph/9506477] [INSPIRE].
ADS
Google Scholar
P. Huet and A.E. Nelson, CP violation and electroweak baryogenesis in extensions of the standard model, Phys. Lett.
B 355 (1995) 229 [hep-ph/9504427] [INSPIRE].
ADS
Article
Google Scholar
G.D. Moore, Computing the strong sphaleron rate, Phys. Lett.
B 412 (1997) 359 [hep-ph/9705248] [INSPIRE].
ADS
Article
Google Scholar
P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev.
D 36 (1987) 581 [INSPIRE].
ADS
Google Scholar
L. Carson, X. Li, L.D. McLerran and R.-T. Wang, Exact computation of the small fluctuation determinant around a sphaleron, Phys. Rev.
D 42 (1990) 2127 [INSPIRE].
ADS
Google Scholar
G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev.
D 45 (1992) 2685 [INSPIRE].
ADS
Google Scholar
G.D. Moore, Electroweak bubble wall friction: analytic results, JHEP
03 (2000) 006 [hep-ph/0001274] [INSPIRE].
ADS
Article
Google Scholar
A. Megevand and A.D. Sanchez, Velocity of electroweak bubble walls, Nucl. Phys.
B 825 (2010) 151 [arXiv:0908.3663] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Ellis, D.S. Hwang, K. Sakurai and M. Takeuchi, Disentangling Higgs-top couplings in associated production, JHEP
04 (2014) 004 [arXiv:1312.5736] [INSPIRE].
ADS
Article
Google Scholar
J. Yue, Enhanced thj signal at the LHC with h → γγ decay and CP-violating top-Higgs coupling, Phys. Lett.
B 744 (2015) 131 [arXiv:1410.2701] [INSPIRE].
ADS
Article
Google Scholar
F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J.
C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].
ADS
Article
Google Scholar
F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on
\( t\overline{t}H \)
searches at the LHC, JHEP
02 (2016) 113 [arXiv:1507.05640] [INSPIRE].
ADS
Article
Google Scholar
C. Degrande, J.M. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing top-Higgs non-standard interactions at the LHC, JHEP
07 (2012) 036 [Erratum ibid.
03 (2013) 032] [arXiv:1205.1065] [INSPIRE].
S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP
01 (2013) 088 [arXiv:1211.0499] [INSPIRE].
ADS
Article
Google Scholar
P. Agrawal, S. Bandyopadhyay and S.P. Das, Multilepton signatures of the Higgs boson through its production in association with a top-quark pair, Phys. Rev.
D 88 (2013) 093008 [arXiv:1308.3043] [INSPIRE].
ADS
Google Scholar
C. Englert and E. Re, Bounding the top Yukawa coupling with Higgs-associated single-top production, Phys. Rev.
D 89 (2014) 073020 [arXiv:1402.0445] [INSPIRE].
ADS
Google Scholar
S. Biswas, R. Frederix, E. Gabrielli and B. Mele, Enhancing the
\( t\overline{t}H \)
signal through top-quark spin polarization effects at the LHC, JHEP
07 (2014) 020 [arXiv:1403.1790] [INSPIRE].
ADS
Article
Google Scholar
J. Chang, K. Cheung, J.S. Lee and C.-T. Lu, Probing the top-Yukawa coupling in associated Higgs production with a single top quark, JHEP
05 (2014) 062 [arXiv:1403.2053] [INSPIRE].
ADS
Article
Google Scholar
B. Bhattacharya, A. Datta and D. London, Probing new physics in Higgs couplings to fermions using an angular analysis, Phys. Lett.
B 736 (2014) 421 [arXiv:1407.0695] [INSPIRE].
ADS
Article
MATH
Google Scholar
L. Wu, Enhancing thj production from top-Higgs FCNC couplings, JHEP
02 (2015) 061 [arXiv:1407.6113] [INSPIRE].
ADS
Article
Google Scholar
S. Khatibi and M.M. Najafabadi, Exploring the anomalous Higgs-top couplings, Phys. Rev.
D 90 (2014) 074014 [arXiv:1409.6553] [INSPIRE].
ADS
Google Scholar
X.-G. He, G.-N. Li and Y.-J. Zheng, Probing Higgs boson CP properties with
\( t\overline{t}H \)
at the LHC and the 100 TeV pp collider, Int. J. Mod. Phys.
A 30 (2015) 1550156 [arXiv:1501.00012] [INSPIRE].
ADS
Article
Google Scholar
Y. Chen, D. Stolarski and R. Vega-Morales, Golden probe of the top Yukuwa coupling, Phys. Rev.
D 92 (2015) 053003 [arXiv:1505.01168] [INSPIRE].
ADS
Google Scholar
N. Moretti, P. Petrov, S. Pozzorini and M. Spannowsky, Measuring the signal strength in
\( t\overline{t}H \)
with
\( H\to b\overline{b} \), Phys. Rev.
D 93 (2016) 014019 [arXiv:1510.08468] [INSPIRE].
ADS
Google Scholar
U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev.
D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
ADS
Google Scholar
M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP
10 (2012) 112 [arXiv:1206.5001] [INSPIRE].
ADS
Article
Google Scholar
J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP
04 (2013) 151 [arXiv:1212.5581] [INSPIRE].
ADS
Article
Google Scholar
M.J. Dolan, C. Englert and M. Spannowsky, New physics in LHC Higgs boson pair production, Phys. Rev.
D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE].
ADS
Google Scholar
V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-pair production and measurement of the triscalar coupling at LHC(8, 14), Phys. Lett.
B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].
ADS
Article
Google Scholar
A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed — selecting hh events at the high luminosity LHC, Phys. Lett.
B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE].
ADS
Article
Google Scholar
R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett.
B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].
ADS
Article
Google Scholar
N. Liu, S. Hu, B. Yang and J. Han, Impact of top-Higgs couplings on di-Higgs production at future colliders, JHEP
01 (2015) 008 [arXiv:1408.4191] [INSPIRE].
ADS
Google Scholar
A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev.
D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
ADS
Google Scholar
C.-T. Lu, J. Chang, K. Cheung and J.S. Lee, An exploratory study of Higgs-boson pair production, JHEP
08 (2015) 133 [arXiv:1505.00957] [INSPIRE].
ADS
Article
Google Scholar
S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev.
D 7 (1973) 1888 [INSPIRE].
ADS
Google Scholar
L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev.
D 9 (1974) 3320 [INSPIRE].
ADS
Google Scholar
M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev.
D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].
ADS
Google Scholar
J. Elias-Miro, J.R. Espinosa and T. Konstandin, Taming infrared divergences in the effective potential, JHEP
08 (2014) 034 [arXiv:1406.2652] [INSPIRE].
ADS
Article
Google Scholar
S.P. Martin, Taming the Goldstone contributions to the effective potential, Phys. Rev.
D 90 (2014) 016013 [arXiv:1406.2355] [INSPIRE].
ADS
Google Scholar
A. Pilaftsis and D. Teresi, Symmetry-improved 2PI approach to the Goldstone-boson IR problem of the SM effective potential, Nucl. Phys.
B 906 (2016) 381 [arXiv:1511.05347] [INSPIRE].
Google Scholar