Abstract
We study the implications for bounds on the top quark pole mass m t in models with low scale supersymmetry following the discovery of the Standard Model-like Higgs boson. In the minimal supersymmetric standard model, we find that m t ≥ 164 GeV, if the light CP even Higgs boson mass m h = 125 ± 2 GeV. We also explore the top quark and Higgs boson masses in two classes of supersymmetric SO(10) models with t-b-τ Yukawa coupling unification at M GUT. In particular, assuming SO(10) compatible non-universal gaugino masses, setting m h = 125 GeV and requiring 5% or better Yukawa unification, we obtain the result 172 GeV ≤ m t ≤ 175 GeV. Conversely, demanding 5% or better t-b-τ Yukawa unification and setting m t = 173.2 GeV, the Higgs boson mass is predicted to lie in the range 122 GeV ≤ m h ≤ 126 GeV.
Article PDF
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
CDF, D0 collaborations, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].
M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].
O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].
J. Erler, Tests of the Electroweak Standard Model, J. Phys. Conf. Ser. 485 (2014) 012010 [arXiv:1209.3324] [INSPIRE].
M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].
Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].
Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].
A. Yamada, Radiative corrections to the Higgs masses in the minimal supersymmetric standard model, Phys. Lett. B 263 (1991) 233 [INSPIRE].
J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].
J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].
H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].
B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].
S.I. Gogolev et al., Total cross-section of the reaction π + d → pp at pion energies 26 MeV to 40 MeV, Phys. Lett. B 300 (1993) 24 [INSPIRE].
Q. Shafi and B. Ananthanarayan, Will LEP-2 narrowly miss the Weinberg-Salam Higgs boson?, Trieste HEP Cosmol. 1 (1991) 233 [INSPIRE].
I. Gogoladze, Q. Shafi and C.S. Un, Higgs Boson Mass from t-b-τ Yukawa Unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].
M. Adeel Ajaib, I. Gogoladze, Q. Shafi and C.S. Un, A Predictive Yukawa Unified SO(10) Model: Higgs and Sparticle Masses, JHEP 07 (2013) 139 [arXiv:1303.6964] [INSPIRE].
I. Gogoladze, R. Khalid and Q. Shafi, Yukawa Unification and Neutralino Dark Matter in SU(4) c × SU(2) L × SU(2) R , Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [INSPIRE].
I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t − b − τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP 12 (2010) 055 [arXiv:1008.2765] [INSPIRE].
I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, Higgs and Sparticle Spectroscopy with Gauge-Yukawa Unification, JHEP 06 (2011) 117 [arXiv:1102.0013] [INSPIRE].
I. Gogoladze, Q. Shafi and C.S. Un, SO(10) Yukawa Unification with μ < 0, Phys. Lett. B 704 (2011) 201 [arXiv:1107.1228] [INSPIRE].
M. Badziak, M. Olechowski and S. Pokorski, Yukawa unification in SO(10) with light sparticle spectrum, JHEP 08 (2011) 147 [arXiv:1107.2764] [INSPIRE].
M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data, Mod. Phys. Lett. A 27 (2012) 1230020 [arXiv:1205.6232] [INSPIRE].
A.S. Joshipura and K.M. Patel, Yukawa coupling unification in SO(10) with positive μ and a heavier gluino, Phys. Rev. D 86 (2012) 035019 [arXiv:1206.3910] [INSPIRE].
A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa Unification Predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].
A. Anandakrishnan and S. Raby, Yukawa Unification Predictions with effective “Mirage” Mediation, Phys. Rev. Lett. 111 (2013) 211801 [arXiv:1303.5125] [INSPIRE].
M. Badziak, M. Olechowski and S. Pokorski, Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification, JHEP 10 (2013) 088 [arXiv:1307.7999] [INSPIRE].
T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and supersymmetry spectra from SO(10) Yukawa unification with mu greater than 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [INSPIRE].
T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [INSPIRE].
F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, pp and e + e − reactions, hep-ph/0312045 [INSPIRE].
J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].
Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [INSPIRE].
J.L. Chkareuli and I.G. Gogoladze, Unification picture in minimal supersymmetric SU(5) model with string remnants, Phys. Rev. D 58 (1998) 055011 [hep-ph/9803335] [INSPIRE].
D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and R.K. Singh, Constraining the MSSM with universal gaugino masses and implication for searches at the LHC, JHEP 11 (2009) 026 [arXiv:0906.5048] [INSPIRE].
L.E. Ibáñez and G.G. Ross, SU(2) L × U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts, Phys. Lett. B 110 (1982) 215 [INSPIRE].
K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Aspects of Grand Unified Models with Softly Broken Supersymmetry, Prog. Theor. Phys. 68 (1982) 927 [Erratum ibid. 70 (1983) 330] [INSPIRE].
L.E. Ibáñez, Locally Supersymmetric SU(5) Grand Unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].
J.R. Ellis, D.V. Nanopoulos and K. Tamvakis, Grand Unification in Simple Supergravity, Phys. Lett. B 121 (1983) 123 [INSPIRE].
L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal Low-Energy Supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE].
Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with coannihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [INSPIRE].
H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [INSPIRE].
F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].
CDF collaboration, T. Aaltonen et al., Search for \( B_s^0 \) → μ + μ − and \( B_d^0 \) → μ + μ − decays with 2f b −1 of \( p\overline{p} \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [INSPIRE].
Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b − hadron and c − hadron Properties at the End of 2007, arXiv:0808.1297 [INSPIRE].
Muon G-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s} \) = 7 TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].
CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].
CMS collaboration, Higgs to tau tau (MSSM) (HCP), CMS-PAS-HIG-12-050.
A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].
R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].
N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].
L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].
L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
B. Ananthanarayan and P.N. Pandita, Sparticle Mass Spectrum in Grand Unified Theories, Int. J. Mod. Phys. A 22 (2007) 3229 [arXiv:0706.2560] [INSPIRE].
S. Bhattacharya, A. Datta and B. Mukhopadhyaya, Non-universal gaugino masses: a signal-based analysis for the Large Hadron Collider, JHEP 10 (2007) 080 [arXiv:0708.2427] [INSPIRE].
S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].
H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [INSPIRE].
S.R. Choudhury and N. Gaur, Dileptonic decay of B(s) meson in SUSY models with large tan Beta, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].
K.S. Babu and C.F. Kolda, Higgs mediated B 0 → μ + μ − in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].
P. Draper, G. Lee and C.E.M. Wagner, Precise Estimates of the Higgs Mass in Heavy SUSY, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].
H. Baer, S. Raza and Q. Shafi, A heavier gluino from t − b − τ Yukawa-unified SUSY, Phys. Lett. B 712 (2012) 250 [arXiv:1201.5668] [INSPIRE].
I. Gogoladze, R. Khalid, N. Okada and Q. Shafi, Soft Probes of SU(5) Unification, Phys. Rev. D 79 (2009) 095022 [arXiv:0811.1187] [INSPIRE].
I. Gogoladze, S. Raza and Q. Shafi, Light Stop from b-tau Yukawa Unification, Phys. Lett. B 706 (2012) 345 [arXiv:1104.3566] [INSPIRE].
H. Baer, I. Gogoladze, A. Mustafayev, S. Raza and Q. Shafi, Sparticle mass spectra from SU(5) SUSY GUT models with b − τ Yukawa coupling unification, JHEP 03 (2012) 047 [arXiv:1201.4412] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1402.2924
On leave of absence from: Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia. (Ilia Gogoladze)
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gogoladze, I., Khalid, R., Raza, S. et al. Top quark and Higgs boson masses in supersymmetric models. J. High Energ. Phys. 2014, 109 (2014). https://doi.org/10.1007/JHEP04(2014)109
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2014)109