Abstract
We investigate the superconformal index of four-dimensional superconformal field theories that arise on coincident M5 branes wrapping a holomorphic curve in a local Calabi-Yau three-fold. The structure of the index is very similar to that which appears in the special case preserving \( \mathcal{N} \) = 2 supersymmetry. We first compute the index for the fixed points that admit a known four-dimensional ultraviolet description and prove infrared equivalence at the level of the index for all such constructions. These results suggest a formulation of the index as a two-dimensional topological quantum field theory that generalizes the one that computes the \( \mathcal{N} \) = 2 index. The TQFT structure leads to an expression for the index of a much larger family of \( \mathcal{N} \) = 1 class S fixed points in terms of the index of the \( \mathcal{N} \) = 2 theories. Calculations of simple quantities with the index suggests a connection between these families of fixed points and the mathematics of SU(2) Yang-Mills theory on the wrapped curve.
References
D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].
T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].
S. Cecotti, C. Cordova and C. Vafa, Braids, walls and mirrors, arXiv:1110.2115 [INSPIRE].
I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M 5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].
I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M 5-branes on Riemann surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].
F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].
B.S. Acharya, J.P. Gauntlett and N. Kim, Five-branes wrapped on associative three cycles, Phys. Rev. D 63 (2001) 106003 [hep-th/0011190] [INSPIRE].
F. Benini and N. Bobev, Two-dimensional c-extremization for wrapped branes, to appear.
F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
A. Gadde, K. Maruyoshi, Y. Tachikawa and W. Yan, New N = 1 dualities, JHEP 06 (2013) 056 [arXiv:1303.0836] [INSPIRE].
K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].
J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].
M. Kulaxizi and A. Parnachev, Energy flux positivity andl unitarity in CFTs, Phys. Rev. Lett. 106 (2011) 011601 [arXiv:1007.0553] [INSPIRE].
F. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].
J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].
A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the superconformal index of N = 1 IR fixed points: a holographic check, JHEP 03 (2011) 041 [arXiv:1011.5278] [INSPIRE].
D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly marginal deformations and global symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].
C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].
C. Romelsberger, Calculating the superconformal index and Seiberg duality, arXiv:0707.3702 [INSPIRE].
F. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].
A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].
F.J. van de Bult, An elliptic hypergeometric beta integral transformation, arXiv:0912.3812.
V.P. Spiridonov, Theta hypergeometric integrals, math/0303205.
V. Spiridonov and G. Vartanov, Superconformal indices for N = 1 theories with multiple duals, Nucl. Phys. B 824 (2010) 192 [arXiv:0811.1909] [INSPIRE].
D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, arXiv:1207.3577 [INSPIRE].
A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].
A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The superconformal index of the E 6 SCFT, JHEP 08 (2010) 107 [arXiv:1003.4244] [INSPIRE].
J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves, math/0411037 [INSPIRE].
M. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. Lond. A 308 (1982) 523.
M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic uniformization, Commun. Math. Phys. 318 (2013) 429 [arXiv:1109.3724] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1212.1467
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Beem, C., Gadde, A. The \( \mathcal{N} \) = 1 superconformal index for class \( \mathcal{S} \) fixed points. J. High Energ. Phys. 2014, 36 (2014). https://doi.org/10.1007/JHEP04(2014)036
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2014)036
Keywords
- Supersymmetric gauge theory
- Supersymmetry and Duality
- Duality in Gauge Field Theories