Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Quantitative study of different forms of geometrical scaling in deep inelastic scattering at HERA
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

αs in the Deep-Inelastic Scattering Scheme

11 April 2022

A. V. Kotikov, V. G. Krivokhizhin & B. G. Shaikhatdenov

Non-perturbative structure of semi-inclusive deep-inelastic and Drell-Yan scattering at small transverse momentum

23 June 2020

Ignazio Scimemi & Alexey Vladimirov

Analytic results for deep-inelastic scattering at NNLO QCD with the nested soft-collinear subtraction scheme

03 January 2020

Konstantin Asteriadis, Fabrizio Caola, … Raoul Röntsch

Mapping the kinematical regimes of semi-inclusive deep inelastic scattering

09 October 2019

M. Boglione, A. Dotson, … N. Sato

Semi-inclusive deep-inelastic scattering in Wandzura-Wilczek-type approximation

04 June 2019

S. Bastami, H. Avakian, … K. Tezgin

Diffractive deeply inelastic scattering in future electron-ion colliders

03 March 2021

D. Bendova, J. Cepila, … M. Matas

Nuclear Effects in the Deuteron in the Resonance and Deep-Inelastic Scattering Region

04 September 2019

S. A. Kulagin

Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies

23 February 2021

T. Csörgő, T. Novák, … I. Szanyi

CGC/saturation approach: an impact-parameter dependent model for diffraction production in DIS

09 June 2018

Carlos Contreras, Eugene Levin, … Irina Potashnikova

Download PDF
  • Open Access
  • Published: 30 April 2013

Quantitative study of different forms of geometrical scaling in deep inelastic scattering at HERA

  • Michal Praszalowicz1 &
  • Tomasz Stebel1 

Journal of High Energy Physics volume 2013, Article number: 169 (2013) Cite this article

  • 384 Accesses

  • 10 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We use recently proposed method of ratios to assess the quality of geometrical scaling in deep inelastic scattering for different forms of the saturation scale. We consider original form of geometrical scaling (motivated by the Balitski-Kovchegov (BK) equation with fixed coupling) studied in more detail in our previous paper, and four new hypotheses: phenomenologically motivated case with Q 2 dependent exponent λ that governs small x dependence of the saturation scale, two versions of scaling (running coupling 1 and 2) that follow from the BK equation with running coupling, and diffusive scaling suggested by the QCD evolution equation beyond mean field approximation. It turns out that more sophisticated scenarios: running coupling scaling and diffusive scaling are disfavored by the combined HERA data on e + p deep inelastic structure function F 2.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A. Stasto, K.J. Golec-Biernat and J. Kwiecinski, Geometric scaling for the total γ ∗ p cross-section in the low x region, Phys. Rev. Lett. 86 (2001) 596 [hep-ph/0007192] [INSPIRE].

    Article  ADS  Google Scholar 

  2. K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].

    ADS  Google Scholar 

  3. K.J. Golec-Biernat and M. Wusthoff, Saturation in diffractive deep inelastic scattering, Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE].

    ADS  Google Scholar 

  4. M. Praszalowicz and T. Stebel, Quantitative study of geometrical scaling in deep inelastic scattering at HERA, JHEP 03 (2013) 090 [arXiv:1211.5305] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Stebel, Quantitative analysis of geometrical scaling in deep inelastic scattering, arXiv:1210.1567 [INSPIRE].

  6. A.H. Mueller, Parton saturation: an overview, hep-ph/0111244 [INSPIRE].

  7. L. McLerran, Strongly interacting matter matter at very high energy density: 3 lectures in Zakopane, Acta Phys. Polon. B 41 (2010) 2799 [arXiv:1011.3203] [INSPIRE].

    Google Scholar 

  8. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].

    ADS  Google Scholar 

  10. E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].

    Article  ADS  Google Scholar 

  11. E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].

    Article  ADS  Google Scholar 

  12. I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].

    ADS  Google Scholar 

  14. Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].

    ADS  Google Scholar 

  15. S. Munier and R.B. Peschanski, Geometric scaling as traveling waves, Phys. Rev. Lett. 91 (2003) 232001 [hep-ph/0309177] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Munier and R.B. Peschanski, Traveling wave fronts and the transition to saturation, Phys. Rev. D 69 (2004) 034008 [hep-ph/0310357] [INSPIRE].

    ADS  Google Scholar 

  17. L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  18. A.H. Mueller and J-W. Qiu, Gluon recombination and shadowing at small values of x, Nucl. Phys. 268 (1986) 427.

    Article  ADS  Google Scholar 

  19. A.H. Mueller, Parton saturation at small x and in large nuclei, Nucl. Phys. B 558 (1999) 285 [hep-ph/9904404] [INSPIRE].

    Article  ADS  Google Scholar 

  20. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].

    ADS  Google Scholar 

  21. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].

    ADS  Google Scholar 

  22. L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].

    ADS  Google Scholar 

  23. V. Gribov and L. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].

    Google Scholar 

  24. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  25. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e − annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].

  26. J. Kwiecinski and A. Stasto, Geometric scaling and QCD evolution, Phys. Rev. D 66 (2002) 014013 [hep-ph/0203030] [INSPIRE].

    ADS  Google Scholar 

  27. J. Kwiecinski and A. Stasto, Large geometric scaling and QCD evolution, Acta Phys. Polon. B 33 (2002) 3439 [INSPIRE].

    ADS  Google Scholar 

  28. E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  29. I. Balitsky and L. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

    Google Scholar 

  30. E. Iancu, K. Itakura and L. McLerran, Geometric scaling above the saturation scale, Nucl. Phys. A 708 (2002) 327 [hep-ph/0203137] [INSPIRE].

    Article  ADS  Google Scholar 

  31. F. Caola and S. Forte, Geometric scaling from GLAP evolution, Phys. Rev. Lett. 101 (2008) 022001 [arXiv:0802.1878] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model: DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [INSPIRE].

    ADS  Google Scholar 

  33. H. Kowalski, L. Lipatov, D. Ross and G. Watt, Using HERA data to determine the infrared behaviour of the BFKL amplitude, Eur. Phys. J. C 70 (2010) 983 [arXiv:1005.0355] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Beuf, An alternative scaling solution for high-energy QCD saturation with running coupling, arXiv:0803.2167 [INSPIRE].

  35. E. Iancu, A. Mueller and S. Munier, Universal behavior of QCD amplitudes at high energy from general tools of statistical physics, Phys. Lett. B 606 (2005) 342 [hep-ph/0410018] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Y. Hatta, E. Iancu, C. Marquet, G. Soyez and D. Triantafyllopoulos, Diffusive scaling and the high-energy limit of deep inelastic scattering in QCD at large-N c , Nucl. Phys. A 773 (2006) 95 [hep-ph/0601150] [INSPIRE].

    Article  ADS  Google Scholar 

  37. F. Gelis, R.B. Peschanski, G. Soyez and L. Schoeffel, Systematics of geometric scaling, Phys. Lett. B 647 (2007) 376 [hep-ph/0610435] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Beuf, R. Peschanski, C. Royon and D. Salek, Systematic analysis of scaling properties in deep inelastic scattering, Phys. Rev. D 78 (2008) 074004 [arXiv:0803.2186] [INSPIRE].

    ADS  Google Scholar 

  39. G. Beuf, C. Royon and D. Salek, Geometric scaling of F 2 and \( F_2^c \) in data and QCD parametrisations, arXiv:0810.5082 [INSPIRE].

  40. C. Royon and R. Peschanski, Studies of scaling properties in deep inelastic scattering, PoS(DIS 2010)282 [arXiv:1008.0261] [INSPIRE].

  41. H1 and ZEUS collaboration, F. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Praszalowicz, Violation of geometrical scaling in pp collisions at NA61/SHINE, arXiv:1301.4647 [INSPIRE].

  43. L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T , p T distributions from 200 GeV < \( \sqrt{s} \) 7 TeV, Acta Phys. Pol. B 41 (2010) 1917 [INSPIRE].

    Google Scholar 

  44. L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T and p T distributions from 200 GeV < \( \sqrt{s} \) < 7 TeV — Addendum, Acta Phys. Polon. B 42 (2011) 99 [arXiv:1011.3403] [INSPIRE].

    Article  Google Scholar 

  45. M. Praszalowicz, Improved geometrical scaling at the LHC, Phys. Rev. Lett. 106 (2011) 142002 [arXiv:1101.0585] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059, Kraków, Poland

    Michal Praszalowicz & Tomasz Stebel

Authors
  1. Michal Praszalowicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tomasz Stebel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michal Praszalowicz.

Additional information

ArXiv ePrint: 1302.4227

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Praszalowicz, M., Stebel, T. Quantitative study of different forms of geometrical scaling in deep inelastic scattering at HERA. J. High Energ. Phys. 2013, 169 (2013). https://doi.org/10.1007/JHEP04(2013)169

Download citation

  • Received: 22 February 2013

  • Accepted: 09 April 2013

  • Published: 30 April 2013

  • DOI: https://doi.org/10.1007/JHEP04(2013)169

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
  • Deep Inelastic Scattering (Phenomenology)
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.