Abstract
We use recently proposed method of ratios to assess the quality of geometrical scaling in deep inelastic scattering for different forms of the saturation scale. We consider original form of geometrical scaling (motivated by the Balitski-Kovchegov (BK) equation with fixed coupling) studied in more detail in our previous paper, and four new hypotheses: phenomenologically motivated case with Q 2 dependent exponent λ that governs small x dependence of the saturation scale, two versions of scaling (running coupling 1 and 2) that follow from the BK equation with running coupling, and diffusive scaling suggested by the QCD evolution equation beyond mean field approximation. It turns out that more sophisticated scenarios: running coupling scaling and diffusive scaling are disfavored by the combined HERA data on e + p deep inelastic structure function F 2.
References
A. Stasto, K.J. Golec-Biernat and J. Kwiecinski, Geometric scaling for the total γ ∗ p cross-section in the low x region, Phys. Rev. Lett. 86 (2001) 596 [hep-ph/0007192] [INSPIRE].
K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].
K.J. Golec-Biernat and M. Wusthoff, Saturation in diffractive deep inelastic scattering, Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE].
M. Praszalowicz and T. Stebel, Quantitative study of geometrical scaling in deep inelastic scattering at HERA, JHEP 03 (2013) 090 [arXiv:1211.5305] [INSPIRE].
T. Stebel, Quantitative analysis of geometrical scaling in deep inelastic scattering, arXiv:1210.1567 [INSPIRE].
A.H. Mueller, Parton saturation: an overview, hep-ph/0111244 [INSPIRE].
L. McLerran, Strongly interacting matter matter at very high energy density: 3 lectures in Zakopane, Acta Phys. Polon. B 41 (2010) 2799 [arXiv:1011.3203] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2, Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].
I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
Y.V. Kovchegov, Small x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].
S. Munier and R.B. Peschanski, Geometric scaling as traveling waves, Phys. Rev. Lett. 91 (2003) 232001 [hep-ph/0309177] [INSPIRE].
S. Munier and R.B. Peschanski, Traveling wave fronts and the transition to saturation, Phys. Rev. D 69 (2004) 034008 [hep-ph/0310357] [INSPIRE].
L. Gribov, E. Levin and M. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].
A.H. Mueller and J-W. Qiu, Gluon recombination and shadowing at small values of x, Nucl. Phys. 268 (1986) 427.
A.H. Mueller, Parton saturation at small x and in large nuclei, Nucl. Phys. B 558 (1999) 285 [hep-ph/9904404] [INSPIRE].
L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].
V. Gribov and L. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].
G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e − annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].
J. Kwiecinski and A. Stasto, Geometric scaling and QCD evolution, Phys. Rev. D 66 (2002) 014013 [hep-ph/0203030] [INSPIRE].
J. Kwiecinski and A. Stasto, Large geometric scaling and QCD evolution, Acta Phys. Polon. B 33 (2002) 3439 [INSPIRE].
E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].
I. Balitsky and L. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].
E. Iancu, K. Itakura and L. McLerran, Geometric scaling above the saturation scale, Nucl. Phys. A 708 (2002) 327 [hep-ph/0203137] [INSPIRE].
F. Caola and S. Forte, Geometric scaling from GLAP evolution, Phys. Rev. Lett. 101 (2008) 022001 [arXiv:0802.1878] [INSPIRE].
J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model: DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [INSPIRE].
H. Kowalski, L. Lipatov, D. Ross and G. Watt, Using HERA data to determine the infrared behaviour of the BFKL amplitude, Eur. Phys. J. C 70 (2010) 983 [arXiv:1005.0355] [INSPIRE].
G. Beuf, An alternative scaling solution for high-energy QCD saturation with running coupling, arXiv:0803.2167 [INSPIRE].
E. Iancu, A. Mueller and S. Munier, Universal behavior of QCD amplitudes at high energy from general tools of statistical physics, Phys. Lett. B 606 (2005) 342 [hep-ph/0410018] [INSPIRE].
Y. Hatta, E. Iancu, C. Marquet, G. Soyez and D. Triantafyllopoulos, Diffusive scaling and the high-energy limit of deep inelastic scattering in QCD at large-N c , Nucl. Phys. A 773 (2006) 95 [hep-ph/0601150] [INSPIRE].
F. Gelis, R.B. Peschanski, G. Soyez and L. Schoeffel, Systematics of geometric scaling, Phys. Lett. B 647 (2007) 376 [hep-ph/0610435] [INSPIRE].
G. Beuf, R. Peschanski, C. Royon and D. Salek, Systematic analysis of scaling properties in deep inelastic scattering, Phys. Rev. D 78 (2008) 074004 [arXiv:0803.2186] [INSPIRE].
G. Beuf, C. Royon and D. Salek, Geometric scaling of F 2 and \( F_2^c \) in data and QCD parametrisations, arXiv:0810.5082 [INSPIRE].
C. Royon and R. Peschanski, Studies of scaling properties in deep inelastic scattering, PoS(DIS 2010)282 [arXiv:1008.0261] [INSPIRE].
H1 and ZEUS collaboration, F. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].
M. Praszalowicz, Violation of geometrical scaling in pp collisions at NA61/SHINE, arXiv:1301.4647 [INSPIRE].
L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T , p T distributions from 200 GeV < \( \sqrt{s} \) 7 TeV, Acta Phys. Pol. B 41 (2010) 1917 [INSPIRE].
L. McLerran and M. Praszalowicz, Saturation and scaling of multiplicity, mean p T and p T distributions from 200 GeV < \( \sqrt{s} \) < 7 TeV — Addendum, Acta Phys. Polon. B 42 (2011) 99 [arXiv:1011.3403] [INSPIRE].
M. Praszalowicz, Improved geometrical scaling at the LHC, Phys. Rev. Lett. 106 (2011) 142002 [arXiv:1101.0585] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1302.4227
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Praszalowicz, M., Stebel, T. Quantitative study of different forms of geometrical scaling in deep inelastic scattering at HERA. J. High Energ. Phys. 2013, 169 (2013). https://doi.org/10.1007/JHEP04(2013)169
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2013)169
Keywords
- QCD Phenomenology
- Deep Inelastic Scattering (Phenomenology)