Towards the fast scrambling conjecture

Abstract

Many proposed quantum mechanical models of black holes include highly non-local interactions. The time required for thermalization to occur in such models should reflect the relaxation times associated with classical black holes in general relativity. Moreover, the time required for a particularly strong form of thermalization to occur, sometimes known as scrambling, determines the time scale on which black holes should start to release information. It has been conjectured that black holes scramble in a time logarithmic in their entropy, and that no system in nature can scramble faster. In this article, we address the conjecture from two directions. First, we exhibit two examples of systems that do indeed scramble in logarithmic time: Brownian quantum circuits and the antiferromagnetic Ising model on a sparse random graph. Unfortunately, both fail to be truly ideal fast scramblers for reasons we discuss. Second, we use Lieb-Robinson techniques to prove a logarithmic lower bound on the scrambling time of systems with finite norm terms in their Hamiltonian. The bound holds in spite of any nonlocal structure in the Hamiltonian, which might permit every degree of freedom to interact directly with every other one.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE].

  2. [2]

    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  4. [4]

    C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  5. [5]

    S.R. Das and S.D. Mathur, Excitations of D strings, entropy and duality, Phys. Lett. B 375 (1996)103 [hep-th/9601152] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  6. [6]

    J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys. B 475 (1996) 679 [hep-th/9604042] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. [8]

    T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. [9]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  10. [10]

    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  11. [11]

    V. Balasubramanian and B. Czech, Quantitative approaches to information recovery from black holes, Class. Quant. Grav. 28 (2011) 163001 [arXiv:1102.3566] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  12. [12]

    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].

    MathSciNet  ADS  Article  MATH  Google Scholar 

  13. [13]

    D.N. Page, Black hole information, in Proceedings of the 5th Canadian conference on general relativity and relativistic astrophysics, R.B. Mann and R.G. McLenaghan eds., (1993) [hep-th/9305040] [INSPIRE].

  14. [14]

    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. [15]

    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  16. [16]

    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. [17]

    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. [18]

    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].

  20. [20]

    C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].

    ADS  Article  Google Scholar 

  21. [21]

    J. Emerson, E. Livine and S. Lloyd, Convergence conditions for random quantum circuits, Phys. Rev. A 72 (2005) 060302 [quant-ph/0503210].

    MathSciNet  ADS  Article  Google Scholar 

  22. [22]

    A.W. Harrow and R.A. Low, Random quantum circuits are approximate 2-designs, Commun. Math. Phys. 291 (2009) 257 [arXiv:0802.1919].

    MathSciNet  ADS  Article  MATH  Google Scholar 

  23. [23]

    L. Arnaud and D. Braun, Efficiency of producing random unitary matrices with quantum circuits, Phys. Rev. A 78 (2008) 062329 [arXiv:0807.0775].

    ADS  Article  Google Scholar 

  24. [24]

    W.G. Brown and L. Viola, Convergence rates for arbitrary statistical moments of random quantum circuits, Phys. Rev. Lett. 104 (2010) 250501 [arXiv:0910.0913].

    ADS  Article  Google Scholar 

  25. [25]

    I.T. Diniz and D. Jonathan, Comment on the paperrandom quantum circuits are approximate 2-designs”, Commun. Math. Phys. 304 (2011) 281 [arXiv:1006.4202].

    MathSciNet  ADS  Article  MATH  Google Scholar 

  26. [26]

    E. Lieb and D. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  27. [27]

    B. Nachtergaele and R. Sims, Lieb-Robinson bounds and the exponential clustering theorem, Commun. Math. Phys. 265 (2006) 119 [math-ph/0506030].

    MathSciNet  ADS  Article  MATH  Google Scholar 

  28. [28]

    M.B. Hastings and T. Koma, Spectral gap and exponential decay of correlations, Commun. Math. Phys. 265 (2006) 781 [math-ph/0507008] [INSPIRE].

    MathSciNet  ADS  Article  MATH  Google Scholar 

  29. [29]

    C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett. 107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    J.L. Barbon and J.M. Magan, Chaotic fast scrambling at black holes, Phys. Rev. D 84 (2011) 106012 [arXiv:1105.2581] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev. D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. [32]

    J. von Neumann, Proof of the ergodic theorem and the H-theorem in quantum mechanics, Eur. Phys. J. H 35 (2010) 201 [Z. Phys. 57 (1929) 30] [arXiv:1003.2133].

    Google Scholar 

  33. [33]

    J. Gemmer, M. Michel and G. Mahler, Quantum thermodynamicsemergence of thermodynamic behavior within composite quantum systems, second edition, Lect. Notes Phys. 784, Springer-Verlag, Berlin Germany (2009).

  34. [34]

    N. Linden, S. Popescu, A.J. Short and A. Winter, Quantum mechanical evolution towards thermal equilibrium, Phys. Rev. E 79 (2009) 061103 [arXiv:0812.2385].

    MathSciNet  ADS  Google Scholar 

  35. [35]

    S. Goldstein, J.L. Lebowitz, R. Tumulka and N. Zanghì, Canonical typicality, Phys. Rev. Lett. 96 (2006) 050403.

    MathSciNet  ADS  Article  Google Scholar 

  36. [36]

    S. Popescu, A.J. Short and A. Winter, The foundations of statistical mechanics from entanglement: individual states vs. averages, Nature Phys. 2 (2006) 754 [quant-ph/0511225].

    ADS  Article  Google Scholar 

  37. [37]

    P. Reimann, Foundation of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett. 101 (2008) 190403 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    P. Bocchieri and A. Loinger, Ergodic foundation of quantum statistical mechanics, Phys. Rev. 114 (1959)948.

    MathSciNet  ADS  Article  Google Scholar 

  39. [39]

    S. Lloyd, Black holes, demons, and the loss of coherence, Ph.D. thesis, Rockefeller University, New York U.S.A. (1988).

  40. [40]

    H. Tasaki, From quantum dynamics to the canonical distribution: general picture and a rigorous example, Phys. Rev. Lett. 80 (1998) 1373.

    MathSciNet  ADS  Article  MATH  Google Scholar 

  41. [41]

    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.

    MathSciNet  ADS  Article  Google Scholar 

  43. [43]

    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].

    ADS  Google Scholar 

  44. [44]

    A. Riera, C. Gogolin and J. Eisert, Thermalization in nature and on a quantum computer, Phys. Rev. Lett. 108 (2012) 080402 [arXiv:1102.2389].

    ADS  Article  Google Scholar 

  45. [45]

    M. Rigol and M. Srednicki, Alternatives to eigenstate thermalization, Phys. Rev. Lett. 108 (2012)110601 [arXiv:1108.0928].

    ADS  Article  Google Scholar 

  46. [46]

    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2000).

    Google Scholar 

  47. [47]

    M. Fannes, A continuity property of the entropy density for spin lattice systems, Commun. Math. Phys. 31 (1973) 291.

    MathSciNet  ADS  Article  MATH  Google Scholar 

  48. [48]

    I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, Springer, Germany (1991).

    Google Scholar 

  49. [49]

    L. Arnold, Stochastic differential equations: theory and applications, Dover, New York U.S.A. (1974).

    Google Scholar 

  50. [50]

    R. Raussendorf, D.E. Browne and H.J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68 (2003) 022312 [quant-ph/0301052].

    ADS  Article  Google Scholar 

  51. [51]

    M. van den Nest, A. Miyake, W. Dür and H.J. Briegel, Universal resources for measurement-based quantum computation, Phys. Rev. Lett. 97 (2006) 150504 [quant-ph/0604010].

    Article  Google Scholar 

  52. [52]

    M. Hein, J. Eisert and H.J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A 69 (2004) 062311 [quant-ph/0307130].

    MathSciNet  ADS  Article  Google Scholar 

  53. [53]

    V.F. Kolchin, Random graphs, Cambridge University Press, Cambridge U.K. (1999).

    Google Scholar 

  54. [54]

    M. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B 69 (2004) 104431 [cond-mat/0305505] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    P. Hayden and A. Winter, The fidelity alternative and quantum identification, arXiv:1003.4994.

  56. [56]

    P. Hayden, M. Horodecki, J. Yard and A. Winter, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15 (2008) 7 [quant-ph/0702005].

    MathSciNet  Article  MATH  Google Scholar 

  57. [57]

    B. Nachtergaele, H. Raz, B. Schlein and R. Sims, Lieb-Robinson bounds for harmonic and anharmonic lattice systems, Commun. Math. Phys. 286 (2009) 1073 [arXiv:0712.3820].

    MathSciNet  ADS  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Douglas Stanford.

Additional information

ArXiv ePrint: 1111.6580

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lashkari, N., Stanford, D., Hastings, M. et al. Towards the fast scrambling conjecture. J. High Energ. Phys. 2013, 22 (2013). https://doi.org/10.1007/JHEP04(2013)022

Download citation

Keywords

  • Lattice Integrable Models
  • M(atrix) Theories
  • Black Holes
  • Quantum Dissipative Systems