Abstract
Large mass ice/water Cherenkov experiments, optimized to detect low energy (1–20 GeV) atmospheric neutrinos, have the potential to discriminate between normal and inverted neutrino mass hierarchies. The sensitivity depends on several model and detector parameters, such as the neutrino flux profile and normalization, the Earth density profile, the oscillation parameter uncertainties, and the detector effective mass and resolution. A proper evaluation of the mass hierarchy discrimination power requires a robust statistical approach. In this work, the Toy Monte Carlo, based on an extended unbinned likelihood ratio test statistic, was used. The effect of each model and detector parameter, as well as the required detector exposure, was then studied. While uncertainties on the Earth density and atmospheric neutrino flux profiles were found to have a minor impact on the mass hierarchy discrimination, the flux normalization, as well as some of the oscillation parameter (\( \varDelta m_{31}^2 \), θ 13, θ 23, and δ CP) uncertainties and correlations resulted critical. Finally, the minimum required detector exposure, the optimization of the low energy threshold, and the detector resolutions were also investigated.
References
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].
G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].
M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].
DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].
RENO collaboration, J. Ahn et al., Observation of Reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
Z.-Z. Xing, Implications of the Daya Bay observation of θ 13 on the leptonic flavor mixing structure and CP-violation, Chin. Phys. C 36 (2012) 281 [arXiv:1203.1672] [INSPIRE].
S. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [INSPIRE].
X. Qian et al., Mass hierarchy resolution in reactor anti-neutrino experiments: parameter degeneracies and detector energy response, Phys. Rev. D 87 (2013) 033005 [arXiv:1208.1551] [INSPIRE].
E. Ciuffoli, J. Evslin and X. Zhang, Mass hierarchy determination using neutrinos from multiple reactors, JHEP 12 (2012) 004 [arXiv:1209.2227] [INSPIRE].
P. Ghoshal and S.T. Petcov, Addendum: neutrino mass hierarchy determination using reactor antineutrinos, JHEP 09 (2012) 115 [arXiv:1208.6473] [INSPIRE].
T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].
NOvA collaboration, D. Ayres et al., NOvA: Proposal to build a 30 kiloton off-axis detector to study ν(μ) → ν(e) oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
T. Schwetz, Comparison of the CERN-MEMPHYS and T2HK neutrino oscillation experiments, Nucl. Phys. Proc. Suppl. 168 (2007) 202 [hep-ph/0611261] [INSPIRE].
A. Stahl et al., Expression of Interest for a very Long Baseline Neutrino Oscillation experiment (LBNO), CERN-SPSC-2012-021 (2012).
A. Samanta, The mass hierarchy with atmospheric neutrinos at INO, Phys. Lett. B 673 (2009) 37 [hep-ph/0610196] [INSPIRE].
A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments, arXiv:1212.1305 [INSPIRE].
K. Abeet al., Letter of intent: the Hyper-Kamiokande experiment — Detector design and physics potential, arXiv:1109.3262 [INSPIRE].
S.K. Agarwalla and P. Hernández, Probing the neutrino mass hierarchy with Super-Kamiokande, JHEP 10 (2012) 086 [arXiv:1204.4217] [INSPIRE].
V. Barger et al., Neutrino mass hierarchy and octant determination with atmospheric neutrinos, Phys. Rev. Lett. 109 (2012) 091801 [arXiv:1203.6012] [INSPIRE].
P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].
J. Bernabeu, S. Palomares-Ruiz, A. Perez and S. Petcov, The Earth mantle core effect in matter induced asymmetries for atmospheric neutrino oscillations, Phys. Lett. B 531 (2002) 90 [hep-ph/0110071] [INSPIRE].
O. Mena, I. Mocioiu and S. Razzaque, Neutrino mass hierarchy extraction using atmospheric neutrinos in ice, Phys. Rev. D 78 (2008) 093003 [arXiv:0803.3044] [INSPIRE].
E.K. Akhmedov, S. Razzaque and A.Y. Smirnov, Mass hierarchy, 2–3 mixing and CP-phase with huge atmospheric neutrino detectors, JHEP 02 (2013) 082 [arXiv:1205.7071] [INSPIRE].
S.K. Agarwalla, T. Li, O. Mena and S. Palomares-Ruiz, Exploring the Earth matter effect with atmospheric neutrinos in ice, arXiv:1212.2238 [INSPIRE].
F. Halzen and S.R. Klein, IceCube: an instrument for neutrino astronomy, Rev. Sci. Instrum. 81 (2010) 081101 [arXiv:1007.1247] [INSPIRE].
ANTARES collaboration, M. Ageron et al., ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656 (2011) 11 [arXiv:1104.1607] [INSPIRE].
KM3NeT collaboration, P. Bagley et al., Technical design report, www.km3net.org (2010).
KM3NeT collaboration, V. Van Elewyck, KM3NeT: A km 3 -scale neutrino telescope in the Mediterranean Sea, PoS(TEXAS 2010)235.
ANTARES collaboration, S. Adrian-Martinez et al., Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope, Phys. Lett. B 714 (2012) 224 [arXiv:1206.0645] [INSPIRE].
IceCube collaboration, R. Abbasi et al., The design and performance of IceCube DeepCore, Astropart. Phys. 35 (2012) 615 [arXiv:1109.6096] [INSPIRE].
D.J. Koskinen, IceCube-DeepCore-PINGU: fundamental neutrino and dark matter physics at the South Pole, Mod. Phys. Lett. A 26 (2011) 2899 [INSPIRE].
IceCube collaboration, T. DeYoung, Particle physics in Ice with IceCube DeepCore, Nucl. Instrum. Meth. A 692 (2012) 180 [arXiv:1112.1053] [INSPIRE].
ORCA status report, to be published.
L. Lyons, Bayes and frequentism: a particle physicist’s perspective, arXiv:1301.1273 [INSPIRE].
X. Qian et al., Statistical evaluation of experimental determinations of neutrino mass hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].
M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Calculation of the flux of atmospheric neutrinos, Phys. Rev. D 52 (1995) 4985 [hep-ph/9503439] [INSPIRE].
P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25 (1981) 297.
F.D. Stacey, Physics of the Earth, 2nd edition, Wiley, U.S.A. (1977).
E. Paschos and J. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE].
M.D. Messier, Evidence for neutrino mass from observations of atmospheric neutrinos with Super-Kamiokande, UMI-99-23965 (1999) [INSPIRE].
C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].
H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].
M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOvA, JHEP 08 (2012) 058 [Erratum ibid. 1211 (2012) 098] [arXiv:1203.3388] [INSPIRE].
T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].
P. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, Combining accelerator and reactor measurements of θ 13 : the first result, JHEP 05 (2012) 023 [arXiv:1111.3330] [INSPIRE].
G. Battistoni, A. Ferrari, T. Montaruli and P. Sala, The FLUKA atmospheric neutrino flux calculation, Astropart. Phys. 19 (2003) 269 [Erratum ibid. 19 (2003) 291] [hep-ph/0207035] [INSPIRE].
V. Agrawal, T.K. Gaisser, P. Lipari and T. Stanev, Atmospheric neutrino flux above 1-GeV, Phys. Rev. D 53 (1996) 1314 [hep-ph/9509423] [INSPIRE].
T. Stanev, Atmospheric neutrino challenges, Nucl. Phys. Proc. Suppl. B 145 (2005) 69 [astro-ph/0412395] [INSPIRE].
M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D 83 (2011) 123001 [arXiv:1102.2688] [INSPIRE].
B.A. Bolt, The precision of density estimation deep in the Earth, Quart. J. Roy. Astron. Soc. 32 (1991) 367.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1301.4332
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Franco, D., Jollet, C., Kouchner, A. et al. Mass hierarchy discrimination with atmospheric neutrinos in large volume ice/water Cherenkov detectors. J. High Energ. Phys. 2013, 8 (2013). https://doi.org/10.1007/JHEP04(2013)008
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2013)008
Keywords
- Neutrino Detectors and Telescopes