Skip to main content
Log in

Thermal mass spectra of vector and axial-vector mesons in predictive soft-wall AdS/QCD model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We extend the predictive soft-wall AdS/QCD model to a thermodynamic model by considering the black hole metric. A modified bulk vacuum expectation value and a modified coefficient for the quartic term in the bulk scalar potential are introduced to obtain a smooth dilaton solution for computing the spectral functions of the vector and axial-vector mesons. It is demonstrated that the peaks appearing in the spectral functions characterize the thermal mass spectra of vector and axial-vector mesons, where the location of the peak moves to a lower value and the width of the peak becomes wider when increasing the temperature. We observe that the peak disappears completely at the critical temperature around T c  = 200 MeV, which implies the deconfinement of quark and the restoration of chiral symmetry breaking. A numerical study by fitting the spectral function in terms of the Breit-Wigner form has been made to show how the peak dissolves quantitatively when the temperature is increased to the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    Article  ADS  Google Scholar 

  2. H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    Article  ADS  Google Scholar 

  3. Y. Nambu, Axial vector current conservation in weak interactions, Phys. Rev. Lett. 4 (1960) 380 [INSPIRE].

    Article  ADS  Google Scholar 

  4. Y.-B. Dai and Y.-L. Wu, Dynamically spontaneous symmetry breaking and masses of lightest nonet scalar mesons as composite Higgs bosons, Eur. Phys. J. C 39 (2005) S1 [hep-ph/0304075] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Huang and Y.-L. Wu, Chiral thermodynamic model of QCD and its critical behavior in the closed-time-path Green function approach, arXiv:1110.4491 [INSPIRE].

  6. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  7. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 ] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  8. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  10. J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Ghoroku, N. Maru, M. Tachibana and M. Yahiro, Holographic model for hadrons in deformed AdS 5 background, Phys. Lett. B 633 (2006) 602 [hep-ph/0510334] [INSPIRE].

    ADS  Google Scholar 

  14. J.P. Shock, F. Wu, Y.-L. Wu and Z.-F. Xie, AdS/QCD phenomenological models from a back-reacted geometry, JHEP 03 (2007) 064 [hep-ph/0611227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. Y.-L. Wu and Z.-F. Xie, A three-flavor AdS/QCD model with a back-reacted geometry, JHEP 10 (2007) 009 [arXiv:0705.2360] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

    ADS  Google Scholar 

  17. P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar mesons in the soft-wall model of AdS/QCD, Phys. Rev. D 78 (2008) 055009 [arXiv:0807.1054] [INSPIRE].

    ADS  Google Scholar 

  18. T. Gherghetta, J.I. Kapusta and T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Phys. Rev. D 79 (2009) 076003 [arXiv:0902.1998] [INSPIRE].

    ADS  Google Scholar 

  19. Y.-Q. Sui, Y.-L. Wu, Z.-F. Xie and Y.-B. Yang, Prediction for the mass spectra of resonance mesons in the soft-wall AdS/QCD with a modified 5D metric, Phys. Rev. D 81 (2010) 014024 [arXiv:0909.3887] [INSPIRE].

    ADS  Google Scholar 

  20. Y.-Q. Sui, Y.-L. Wu and Y.-B. Yang, Predictive AdS/QCD model for mass spectra of mesons with three flavors, Phys. Rev. D 83 (2011) 065030 [arXiv:1012.3518] [INSPIRE].

    ADS  Google Scholar 

  21. S.J. Brodsky and G.F. de Teramond, Hadronic spectra and light-front wavefunctions in holographic QCD, Phys. Rev. Lett. 96 (2006) 201601 [hep-ph/0602252] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S.J. Brodsky and G.F. de Teramond, Light-front dynamics and AdS/QCD correspondence: the pion form factor in the space- and time-like regions, Phys. Rev. D 77 (2008) 056007 [arXiv:0707.3859] [INSPIRE].

    ADS  Google Scholar 

  23. S.J. Brodsky and G.F. de Teramond, Light-front holography, AdS/QCD and hadronic phenomena, Nucl. Phys. Proc. Suppl. 199 (2010) 5 [arXiv:0909.3899] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G.F. de Teramond and S.J. Brodsky, Light-front holography and gauge/gravity duality: the light meson and baryon spectra, Nucl. Phys. Proc. Suppl. 199 (2010) 89 [arXiv:0909.3900] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].

    Article  ADS  Google Scholar 

  31. E. Schreiber, Excited mesons and quantization of string endpoints, hep-th/0403226 [INSPIRE].

  32. M. Shifman, Highly excited hadrons in QCD and beyond, hep-ph/0507246 [INSPIRE].

  33. C.P. Herzog, A holographic prediction of the deconfinement temperature, Phys. Rev. Lett. 98 (2007) 091601 [hep-th/0608151] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Ghoroku and M. Yahiro, Holographic model for mesons at finite temperature, Phys. Rev. D 73 (2006) 125010 [hep-ph/0512289] [INSPIRE].

    ADS  Google Scholar 

  35. M. Fujita, K. Fukushima, T. Misumi and M. Murata, Finite-temperature spectral function of the vector mesons in an AdS/QCD model, Phys. Rev. D 80 (2009) 035001 [arXiv:0903.2316] [INSPIRE].

    ADS  Google Scholar 

  36. M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi and M. Murata, Melting spectral functions of the scalar and vector mesons in a holographic QCD model, Phys. Rev. D 81 (2010) 065024 [arXiv:0911.2298] [INSPIRE].

    ADS  Google Scholar 

  37. P. Colangelo, F. Giannuzzi and S. Nicotri, Holographic approach to finite temperature QCD: the case of scalar glueballs and scalar mesons, Phys. Rev. D 80 (2009) 094019 [arXiv:0909.1534] [INSPIRE].

    ADS  Google Scholar 

  38. A.S. Miranda, C. Ballon Bayona, H. Boschi-Filho and N.R. Braga, Black-hole quasinormal modes and scalar glueballs in a finite-temperature AdS/QCD model, JHEP 11 (2009) 119 [arXiv:0909.1790] [INSPIRE].

    Article  ADS  Google Scholar 

  39. H.R. Grigoryan, P.M. Hohler and M.A. Stephanov, Towards the gravity dual of quarkonium in the strongly coupled QCD plasma, Phys. Rev. D 82 (2010) 026005 [arXiv:1003.1138] [INSPIRE].

    ADS  Google Scholar 

  40. P. Colangelo, F. De Fazio, F. Jugeau and S. Nicotri, On the light glueball spectrum in a holographic description of QCD, Phys. Lett. B 652 (2007) 73 [hep-ph/0703316] [INSPIRE].

    ADS  Google Scholar 

  41. J. Mas, J.P. Shock, J. Tarrio and D. Zoakos, Holographic spectral functions at finite baryon density, JHEP 09 (2008) 009 [arXiv:0805.2601] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Erdmenger, M. Kaminski and F. Rust, Holographic vector mesons from spectral functions at finite baryon or isospin density, Phys. Rev. D 77 (2008) 046005 [arXiv:0710.0334] [INSPIRE].

    ADS  Google Scholar 

  43. R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. J. Mas, J.P. Shock and J. Tarrio, Holographic spectral functions in metallic AdS/CFT, JHEP 09 (2009) 032 [arXiv:0904.3905] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. Y.-Y. Bu and J.M. Yang, Spectral function and quark diffusion constant in non-critical holographic QCD, Nucl. Phys. B 855 (2012) 388 [arXiv:1105.3646] [INSPIRE].

    Article  ADS  Google Scholar 

  46. P. Kovtun and A. Starinets, Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 96 (2006) 131601 [hep-th/0602059] [INSPIRE].

    Article  ADS  Google Scholar 

  47. K. Morita and S.H. Lee, Mass shift and width broadening of J/ψ in QGP from QCD sum rule, Phys. Rev. Lett. 100 (2008) 022301 [arXiv:0704.2021] [INSPIRE].

    Article  ADS  Google Scholar 

  48. K. Morita and S.H. Lee, Heavy quarkonium correlators at finite temperature: QCD sum rule approach, Phys. Rev. D 82 (2010) 054008 [arXiv:0908.2856] [INSPIRE].

    ADS  Google Scholar 

  49. H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062] [INSPIRE].

    Article  ADS  Google Scholar 

  50. T. Faulkner and H. Liu, Meson widths from string worldsheet instantons, Phys. Lett. B 673 (2009) 161 [arXiv:0807.0063] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. Y. Hidaka, O. Morimatsu and T. Nishikawa, Momentum dependence of the spectral functions in the O(4) linear σ-model at finite temperature, Phys. Rev. D 67 (2003) 056004 [hep-ph/0211015] [INSPIRE].

    ADS  Google Scholar 

  52. L.-X. Cui, S. Takeuchi and Y.-L. Wu, Quark number susceptibility and QCD phase transition in the predictive soft-wall AdS/QCD model with finite temperature, Phys. Rev. D 84 (2011) 076004 [arXiv:1107.2738] [INSPIRE].

    ADS  Google Scholar 

  53. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Takeuchi.

Additional information

ArXiv ePrint: 1112.5923

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, LX., Takeuchi, S. & Wu, YL. Thermal mass spectra of vector and axial-vector mesons in predictive soft-wall AdS/QCD model. J. High Energ. Phys. 2012, 144 (2012). https://doi.org/10.1007/JHEP04(2012)144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)144

Keywords

Navigation