Skip to main content
Log in

Visible supersymmetry breaking and an invisible Higgs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If there are multiple hidden sectors which independently break supersymmetry, then the spectrum will contain multiple goldstini. In this paper, we explore the possibility that the visible sector might also break supersymmetry, giving rise to an additional pseudo-goldstino. By the standard lore, visible sector supersymmetry breaking is phenomenologically excluded by the supertrace sum rule, but this sum rule is relaxed with multiple supersymmetry breaking. However, we find that visible sector supersymmetry breaking is still phenomenologically disfavored, not because of a sum rule, but because the visible sector pseudo-goldstino is generically overproduced in the early universe. A way to avoid this cosmological bound is to ensure that an R symmetry is preserved in the visible sector up to supergravity effects. A key expectation of this R-symmetric case is that the Higgs boson will dominantly decay invisibly at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E. Haber, Introductory low-energy supersymmetry, hep-ph/9306207 [INSPIRE].

  2. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  3. M.A. Luty, 2004 TASI lectures on supersymmetry breaking, hep-th/0509029 [INSPIRE].

  4. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Cheung, J. Mardon, Y. Nomura and J. Thaler, A definitive signal of multiple supersymmetry breaking, JHEP 07 (2010) 035 [arXiv:1004.4637] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Craig, J. March-Russell and M. McCullough, The goldstini variations, JHEP 10 (2010) 095 [arXiv:1007.1239] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. McCullough, Stimulated supersymmetry breaking, Phys. Rev. D 82 (2010) 115016 [arXiv:1010.3203] [INSPIRE].

    ADS  Google Scholar 

  8. H.-C. Cheng, W.-C. Huang, I. Low and A. Menon, Goldstini as the decaying dark matter, JHEP 03 (2011) 019 [arXiv:1012.5300] [INSPIRE].

    Article  ADS  Google Scholar 

  9. K. Izawa, Y. Nakai and T. Shimomura, Higgs portal to visible supersymmetry breaking, JHEP 03 (2011) 007 [arXiv:1101.4633] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Argurio, Z. Komargodski and A. Mariotti, Pseudo-goldstini in field theory, Phys. Rev. Lett. 107 (2011) 061601 [arXiv:1102.2386] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Thaler and Z. Thomas, Goldstini can give the Higgs a boost, JHEP 07 (2011) 060 [arXiv:1103.1631] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Cheung, F. D’Eramo and J. Thaler, The spectrum of goldstini and modulini, JHEP 08 (2011) 115 [arXiv:1104.2600] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Benakli and C. Moura, Brane-worlds pseudo-goldstinos, Nucl. Phys. B 791 (2008) 125 [arXiv:0706.3127] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].

    ADS  Google Scholar 

  15. H. Pagels and J.R. Primack, Supersymmetry, cosmology and new TeV physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].

    ADS  Google Scholar 

  17. S. Chang, C. Kilic and R. Mahbubani, The new fat Higgs: slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [INSPIRE].

    ADS  Google Scholar 

  18. A. Delgado and T.M. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, JHEP 11 (2011) 145 [arXiv:1106.2164] [INSPIRE].

    Article  ADS  Google Scholar 

  20. C. Csáki, Y. Shirman and J. Terning, A Seiberg dual for the MSSM: partially composite W and Z, Phys. Rev. D 84 (2011) 095011 [arXiv:1106.3074] [INSPIRE].

    ADS  Google Scholar 

  21. G. F. Giudice and A. Masiero, A natural solution to the μ-problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    ADS  Google Scholar 

  22. M. Visser, Some generalisations of the ORaifeartaigh model, J. Phys. A 18 (1985) L979 DOI:dx.doi.org.

    MathSciNet  ADS  Google Scholar 

  23. E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. Z. Komargodski and D. Shih, Notes on SUSY and R-symmetry breaking in Wess-Zumino models, JHEP 04 (2009) 093 [arXiv:0902.0030] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C. Cheung, F. D’Eramo and J. Thaler, Supergravity computations without gravity complications, Phys. Rev. D 84 (2011) 085012 [arXiv:1104.2598] [INSPIRE].

    ADS  Google Scholar 

  27. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Chang, R. Dermisek, J.F. Gunion and N. Weiner, Nonstandard Higgs boson decays, Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 [arXiv:0801.4554] [INSPIRE].

    Article  ADS  Google Scholar 

  30. ATLAS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb −1 of pp collisions at \(\sqrt {s} = {7}\;TeV\) at the LHC, Technical Report ATLAS-CONF-2011-157, CERN, Geneva Switzerland (2011).

    Google Scholar 

  31. CMS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 inverse femtobarns of pp collision data at \(\sqrt {s} = {7}\;TeV\) at the LHC, Technical Report CMS-PAS-HIG-11-023, CERN, Geneva Switzerland (2011).

    Google Scholar 

  32. K. Cheung, J. Song and Q.-S. Yan, Role of h → ηη in intermediate-mass Higgs boson searches at the Large Hadron Collider, Phys. Rev. Lett. 99 (2007) 031801 [hep-ph/0703149] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Carena, T. Han, G.-Y. Huang and C.E. Wagner, Higgs signal for h → aa at Hadron Colliders, JHEP 04 (2008) 092 [arXiv:0712.2466] [INSPIRE].

    Article  ADS  Google Scholar 

  34. O.J. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [hep-ph/0009158] [INSPIRE].

    ADS  Google Scholar 

  35. R. Godbole, M. Guchait, K. Mazumdar, S. Moretti and D. Roy, Search forinvisibleHiggs signals at LHC via associated production with gauge bosons, Phys. Lett. B 571 (2003) 184 [hep-ph/0304137] [INSPIRE].

    ADS  Google Scholar 

  36. H. Davoudiasl, T. Han and H.E. Logan, Discovering an invisibly decaying Higgs at hadron colliders, Phys. Rev. D 71 (2005) 115007 [hep-ph/0412269] [INSPIRE].

    ADS  Google Scholar 

  37. ATLAS collaboration, Sensitivity to an invisibly decaying Higgs boson, Technical Report PHYS-PUB-2009-061, CERN, Geneva Switzerland (2009).

    Google Scholar 

  38. Sunil, Search for Higgs Boson Using ITS Invisible Decay Mode in CMS Experiment at Large Hadron Collider, Ph.D. Thesis, Panjab University, Chandigarh India (2010).

  39. S. Choi, D. Choudhury, A. Freitas, J. Kalinowski and P. Zerwas, The extended Higgs system in R-symmetric supersymmetry theories, Phys. Lett. B 697 (2011) 215 [Erratum ibid. B 698 (2011)457-458] [arXiv:1012.2688] [INSPIRE].

    ADS  Google Scholar 

  40. B. Bellazzini, C. Csáki, A. Falkowski and A. Weiler, Buried Higgs, Phys. Rev. D 80 (2009) 075008 [arXiv:0906.3026] [INSPIRE].

    ADS  Google Scholar 

  41. P.J. Fox, D. Tucker-Smith and N. Weiner, Higgs friends and counterfeits at hadron colliders, JHEP 06 (2011) 127 [arXiv:1104.5450] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  43. J.T. Ruderman and D. Shih, General Neutralino NLSPs at the Early LHC, arXiv:1103.6083 [INSPIRE].

  44. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Rehermann.

Additional information

ArXiv ePrint: 1111.0628

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolini, D., Rehermann, K. & Thaler, J. Visible supersymmetry breaking and an invisible Higgs. J. High Energ. Phys. 2012, 130 (2012). https://doi.org/10.1007/JHEP04(2012)130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)130

Keywords

Navigation